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Abstract

Anonymous routing is an important cryptographic primitive that allows users to communicate
privately on the Internet, without revealing their message contents or their contacts. Until the
very recent work of Shi and Wu (Eurocrypt’21), all classical anonymous routing schemes are
interactive protocols, and their security rely on a threshold number of the routers being honest.
The recent work of Shi and Wu suggested a new abstraction called Non-Interactive Anonymous
Router (NIAR), and showed how to achieve anonymous routing non-interactively for the first
time. In particular, a single untrusted router receives a token which allows it to obliviously apply
a permutation to a set of encrypted messages from the senders. Shi and Wu’s construction
suffers from two drawbacks: 1) the router takes time quadratic in the number of senders to
obliviously route their messages; and 2) the scheme is proven secure only in the presence of static
corruptions.

In this work, we show how to construct a non-interactive anonymous router scheme with
sub-quadratic router computation, and achieving security in the presence of adaptive corruptions.
To get this result, we assume the existence of indistinguishability obfuscation and one-way
functions. Our final result is obtained through a sequence of stepping stones. First, we show
how to achieve the desired efficiency, but with security under static corruption and in a selective,
single-challenge setting. Then, we go through a sequence of upgrades which eventually get us
the final result. We devise various new techniques along the way which lead to some additional
results. In particular, our techniques for reasoning about a network of obfuscated programs may
be of independent interest.
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1 Introduction

Anonymous communication systems allow users to communicate without revealing their identities and
messages. The earliest design of an anonymous communication system goes back to Chaum [Cha81]
who proposed the design of an encrypted email service that additionally hides the identities of the
sender and the receiver. Since then, numerous approaches have been proposed to build anonymous
routing schemes [Cha81, Cha88, Abe99, GRS99, SBS02, DMS04, ZZZR05, CGF10, BG12, CBM15,
vdHLZZ15,TGL+17] – a key component of anonymous communication systems. These include
mix-nets [Cha81,Abe99,BG12], the Dining Cryptographers’ nets [Cha88,CGF10,APY20], onion
routing [GRS99,DMS04,CL05,DS18], multi-party-computation-based approaches [HEK12,AKTZ17,
SA19], multi-server PIR-write [OS97,GIKM00,CBM15], as well as variants [ZZZR05,vdHLZZ15,
TGL+17].

However, all of these routing schemes are interactive, where many servers or routers engage
in an interactive protocol to achieve routing. The security relies on threshold type assumptions,
e.g., majority or at least one of the routers must be honest. This is unsatisfactory since the
threshold-based trust model increases the barrier of adoption, the interactivity leads to higher
network latency, and finally, the schemes provide no guarantees when all routers may be malicious,
or worse yet, colluding with a subset of the receivers and senders.

The recent work of Shi and Wu [SW21] was the first to study the feasibility of non-interactive
anonymous routing (NIAR) with a single, untrusted router which can additionally collude with
a subset of senders and receivers. The setting is as follows: there are n senders and n receivers,
and each sender u wants to talk to a unique receiver v = π(u) given by the routing permutation
π. The NIAR scheme has a trusted setup that given a routing permutation π outputs encryption
keys for senders, decryption keys for receivers, and a routing token for the router that secretly
encrypts the routing permutation. In each time step, each sender uses its encryption key to encrypt a
message. The router upon collecting all the n ciphertexts applies the routing token to permute them
and convert them into n transformed ciphertexts, and delivers each receiver a single transformed
ciphertext. Each receiver learns their message by decrypting the received ciphertext with their key.
The computation of the permuted ciphertexts can be viewed as the router obliviously applying the
routing permutation π, without learning π.

NIAR was shown to have numerous applications in [SW21] including realizing a non-interactive
anonymous shuffle (NIAS) where n senders send encryptions of their private messages to an entity
called shuffler who, upon decryption, learns a permutation of the senders’ messages, without learning
the mapping between each message and the corresponding sender. A NIAS scheme can be used
to instantiate the shuffle model adopted in a line of work on distributed, differentially private
mechanisms [CSU+19,BBGN19b,GPV19,EFM+19,BEM+17,BBGN19a]. We can realize such a
NIAS construction from NIAR by having the shuffler act on behalf of the NIAR router and all n
receivers, as long as the underlying NIAR scheme provides meaningful security even when all the
receivers collude with the router – termed as receiver-insider security by Shi and Wu [SW21].

Shi and Wu [SW21] give a NIAR scheme that satisfies receiver-insider security assuming the
hardness of the decisional linear problem. Their scheme not only supports an unbounded number of
time steps, but also has good efficiency features: each sender only needs to send Oλ(1) bits per time
step to encrypt a bit,1 moreover, the sender and receiver keys are Oλ(1) and the public parameters
are Oλ(n) in size. However, Shi and Wu’s scheme suffers from two main drawbacks.

• First, their token size and router computation per time step are both quadratic in the number
of users n, that is, Oλ(n

2). We also stress that the quadratic router computation drawback

1Throughout the paper, we use Oλ(·) to hide poly(λ) multiplicative factors where λ denotes the security parameter.

3



pertains not only to the work of Shi and Wu [SW21]. As Gordon et al. [GKLX22] pointed out,
even in classical, interactive anonymous routing constructions [Cha81,Cha88,HEK12,SA19], the
total router computation is typically Ω(nm) where n and m denote the number of clients and
routers, respectively — therefore, in a peer-to-peer environment where the clients also act as
routers, the total computation would be quadratic in n.

• Shi and Wu’s construction is proven secure only under static corruption, i.e., the adversary
must specify all corrupt senders and receivers upfront. This leaves open an interesting question
whether we can construct a NIAR scheme that is secure against adaptive corruptions, i.e., when
the adversary can dynamically decide which players to corrupt.

The status quo gives rise to the following natural questions:

1. Can we have a NIAR scheme with subquadratic router computation?

2. Can we have a NIAR scheme secure against adaptive corruptions?

1.1 Main Result

In this paper, we construct a new NIAR scheme that simultaneously answers both of the above ques-
tions affirmatively. In particular, our new NIAR construction achieves Õλ(n) router computation per
time step where Õλ(·) hides both poly(λ, log n) factors; moreover, it achieves security in the presence
of adaptive corruptions. In terms of assumptions, we need the existence of indistinguishability
obfuscator (iO) [GGH+13,JLS21,GP20,WW20,BDGM20] and one-way functions.

Theorem 1.1 (Informal: NIAR with subquadratic router computation). Let λ be a security
parameter. Let n = n(λ) be the number of senders/receivers. Then, assuming the existence of
indistinguishability obfuscator and one-way functions, there exists a NIAR scheme (in the receiver
insider protection setting) that satisfies security under adaptive corruptions. Further, the asymptotical
performance bounds are as follows:

1. the token size and router computation per time step is Õλ(n);

2. the per-sender communication and encryption time per bit of the message is Õλ(1);

3. each sender key is of length Õλ(1), each receiver key is of length Oλ(1).

Technical highlights. The above result is obtained through a sequence of stepping stones.

• Techniques for reasoning about a network of obfuscated programs. First, we show how to achieve
the desired efficiency, but under a relaxed notion of security, that is, assuming static corruptions
and a selective, single-challenge setting. To achieve this, we use a gate-by-gate obfuscation
approach. Specifically, we break up one big circuit into a network of smaller circuits to obfuscate,
through the use of a quasilinear-sized routing network. In this network, each smaller circuit
is of size polylogarithmic in the number of senders, thus helping us meet our efficiency goals
even after obfuscating each of the smaller circuits. We also devise new techniques for reasoning
about a network of obfuscated programs. Specifically, we propose a new notion of a Somewhere
Statistically Unforgeable (SSU) signature which may be of independent interest, and we show
how to construct SSU signatures from either iO + one-way functions, or from fully homomorphic
encryption.
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• New techniques for upgrading from selective and static security to fully adaptive security. Next,
we want to remove the static corruption and selective-single-challenge restrictions. What is
interesting is that the standard complexity leveraging techniques completely fail in our context
due to our efficiency requirements. Therefore, we devise various new techniques for upgrading the
security of the scheme, which eventually gets us the final result. An important consequence of our
techniques is that we only incur a polynomial security loss when performing the upgrades. A key
insight in our upgrade is to consider the following single-inversion restriction on the adversary: it
must submit two permutations seperated by a single inversion in the two worlds, i.e., the two
permutations are almost identical except for swapping the destinations of a pair of senders. We
prove that security w.r.t. a single inversion is in fact equivalent to security w.r.t two arbitrary
permutations.

Along the way, we also explore the relationship of different definitions of NIAR security, and get
several additional results (see Section 1.2) which may be of independent interest.

1.2 Additional Results

Impossibility of simulation security for adaptive corruptions. Shi and Wu [SW21] showed
that assuming static corruption, indistinguishability-based security is equivalent to simulation-
based security for NIAR. We revisit the two definitional approaches in the context of adaptive
corruption. Somewhat surprisingly, we show that indistinguishability-based security and simulation-
based security are not equivalent in the context of adaptive corruption. In our paper, we focus on
achieving indistinguishability-based security under adaptive corruptions, since we prove that the
simulation-based notion is impossible for adaptive corruptions. However, our construction does
satisfy simulation-based security under static corruptions due to the equivalence of the two notions
under static corruptions.

Theorem 1.2 (Informal: Impossibility of simulation security for adaptive corruptions). There does
not exist a NIAR scheme (in the receiver insider protection setting) that achieves simulation-based
security under adaptive corruptions (even with subexponential security assumptions).

Adaptively secure NIAR with O(n2) router computation from standard assumptions.
Our techniques for upgrading from selective/static to adaptive security can be of independent
interest. For example, we can apply the same upgrade techniques to the previous NIAR scheme by
Shi and Wu [SW21], which gives an adaptively secure NIAR scheme with Oλ(n

2) router computation
from standard assumptions.

Corollary 1.3 (Informal: quadratic computation NIAR scheme assuming bilinear maps). Assume
standard bilinear map assumptions. There exists a NIAR scheme (in the receiver insider protection
setting) that satisfies security under adaptive corruptions, and the asymptotical performance bounds
are as follows:

1. the token size and router computation per time step is Oλ(n
2);

2. the per-sender communication and encryption time per bit of the message is Õλ(1);

3. each sender key is of length Õλ(1), each receiver key is of length Oλ(1).

Static-to-adaptive-corruption compiler for other settings. In Appendices H and I, we
show that our static-to-adaptive-corruption compiler also works for non-interactive differentially
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anonymous router schemes as introduced by Bünz et al. [BHMS21], and NIAR schemes with sender
insider protection as introduced by Bunn et al. [BKO22].

1.3 Related Work and Open Questions

Techniques for reasoning about a network of obfuscated programs. To the best of our
knowledge, the only other works that used the gate-by-gate obfuscation technique are the Jain
and Jin [JJ22] and Canetti et al. [CLTV15]. However, our techniques are fundamentally different
in nature from the previous works. With Jain and Jin’s techniques, the evaluator will need to
spend poly(n) time to evaluate each obfuscated gate whereas for our construction, each obfuscated
gate takes only poly(λ, log n) time to evaluate, which is important for our efficiency claims. Our
network of iOs idea also differs fundamentally from Canetti et al. [CLTV15], which builds leveled
fully-homomorphic encryption scheme from iO. In our setting, there are multiple encrypters some of
whom may be corrupt, whereas in the setting of Canetti et al. [CLTV15], there is a single encrypter
who is assumed to be honest — so their setting is a lot easier.

Another line of works [CHJV14,KLW15,BGL+15,AJS17,JJ22] constructs indistinguishability
obfuscation for Turing machines and RAM programs. A natural question is whether obfuscating
the routing network modelled as a Turing machine or RAM program can result in the required
sub-quadratic routing efficiency. Unfortunately, prior approaches [CHJV14,KLW15,BGL+15,AJS17,
JJ22] suffer from evaluation time that is polynomial in the input length — in the case of the routing
network, it would result in poly(n) runtime. Therefore, we cannot directly use existing iO for Turing
machines or RAMs as a blackbox to achieve the desired efficiency. This is also another way to see
why our results are non-trivial.

Additional related work. The recent work of Bünz, Hu, Matsuo and Shi [BHMS21] made an
attempt at answering the question. They could not fully achieve the above goal, but did suggest a

scheme with O(λ
1
γ · n1+γ) router computation for any γ ∈ (0, 1). Their scheme has two significant

drawbacks. First, their subquadratic router computation comes at the price of relaxing the security
definition to (ϵ, δ)-differential privacy [DMNS06]. In other words, their scheme ensures that the
adversary’s views are indistinguishable only for two neighboring routing permutations (whereas full
security requires indistinguishability for any two routing permutations). Not only is differential
privacy a significantly weaker security notion, it can also leads to additional complications in terms
of managing the privacy budget. Second, their poly(λ) dependency is not a fixed one — to improve
the dependence on the parameter n, we want to choose an arbitrarily small γ, however, this would
significantly blow up the polynomial dependence on the security parameter λ.

Comparison with concurrent work. We stress that in this paper, we focus on constructing a
NIAR scheme whose security is sufficient for instantiating a non-interactive anonymous shuffler. As
mentioned earlier, the shuffler application is important in the context of distributed differentially
private mechanisms in the so-called “shuffle model”. For this application to work, we need the NIAR
scheme to satisfy a notion of security called receiver-insider protection, that is, corrupt receivers
(possibly colluding with the router and some corrupt senders) should not learn which honest senders
have sent the message.

In comparison, the elegant concurrent work by Bunn, Kushilevitz, and Ostrovsky [BKO22] solves
the dual problem as ours. Their syntax is the same as ours, but their security guarantees are for
the sender insider protection setting, and are not sufficient for instantiating the shuffler application.
In particular, in the sender insider protection setting, corrupt senders (possibly colluding with
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the router and some corrupt receivers) should not learn which honest receivers are receiving their
messages.

From a technical standpoint, sender insider protection is akin to Private Information Retrieval
(PIR) [CGKS95,CG97]. In fact, if we allow quadratic router computation, a NIAR scheme with a
sender insider protection is implied by PIR which is known from standard, polynomial-strength
assumptions. By contrast, PIR does not directly lead to NIAR with receiver-insider security (even
if router computation efficiency is a non-concern). In fact, NIAR with receiver insider protection
is technically akin to multi-client functional encryption (MCFE) with function-hiding security.
Technically, a NIAR scheme with receiver-insider protection implies a function-hiding MCFE for
the selection functionality with the bounded, upfront key queries2. So far, the only known way to
achieve receiver-insider security (i.e., the work by Shi and Wu [SW21]) also uses function-hiding,
multi-client functional encryption as a building block. For this reason, receiver insider protection is
technically more challenging based on the existing knowledge and techniques.

Bunn et al. [BKO22] did not discuss the issue of adaptive corruption in the context of their
primitive. Interestingly, our work’s static-to-adaptive compiler can also be applied to their sender
insider protection setting.

Finally, from a technical perspective, Bunn et al.’s main idea is to use a rate-1 PIR scheme
where they reuse the clients’ PIR queries at the router over multiple sessions. To cut the router
computation to quasi-linear, they also rely an oblivious routing network. In their paper, they
construct and analyze a new oblivious routing network for this purpose. Alternatively, they can
also directly use the same oblivious routing network that we use in our paper, which is directly
borrowed from the earlier algorithms literature [ACN+20,RS21].

Open questions. Our feasibility results naturally raise several open questions for future work.
Can we achieve subquadratic router computation from standard assumptions without using indistin-
guishability obfuscation? Can we construct a scheme with good concrete performance? Can we
strengthen the security of the scheme to get full insider protection (as defined by [SW21]) from
standard assumptions?

2 Technical Roadmap

To get the above result, we had to go through multiple intermediate steps, where we first construct
schemes with relaxed security notions and then gradually lift them to full security. In this process,
we develop several interesting new techniques and building blocks that may be of independent
interest. At a very high level, our blueprint and techniques are summarized below:

2.1 Single Selective Challenge and Static Corruptions

Our first step is to construct a NIAR scheme with quasilinear router computation, but we relax the
definitions and only require security when the adversary has to upfront commit to 1) all corrupt
senders and receivers and 2) a single challenge time step along with the corresponding challenge
plaintext vectors. In this step, we encounter multiple challenges.

Definitional challenge for single, selective security. First, it turns out that even defining a

2In this sense, our adaptive corruption result is also interesting in the context of function-hiding MCFE since
how to get function-hiding MCFE under adaptive corruption was not known earlier. The recent work of Shi and
Vanjani [SV23] showed a function-hiding MCFE scheme for inner-product computation under static corruption, relying
on standard bilinear group assumptions.
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meaningful selective notion of security (in the static corruption setting) is non-trivial, because it is
unclear how the non-challenge rounds should behave. This definition should satisfy two goals: first,
the non-challenge rounds should contain no information about the permutation. This is because our
techniques below crucially rely on this. Second, the definition should generalize naturally to full
security. We discuss these issues in more detail in Appendix D.

Gate-by-gate obfuscation for efficiency. Next, we consider how to get a NIAR scheme with
quasilinear router computation under the relaxed security. To start with, it is helpful to imagine
an inefficient scheme where the router’s token is an obfuscated circuit that encodes the entire
permutation π as well as encryption and decryption keys. Now, upon receiving the n incoming
ciphertexts, the obfuscated circuit decrypts the incoming ciphertexts, applies the permutation π,
and reencrypts the outcomes using each receiver’s respective key. The intuition if we treat the
obfuscation as a black box which completely hides its internals, then it should hide everything about
π and the honest parties’ plaintexts beyond what the corrupted parties are allowed to decrypt.

There are two problems with this approach. First, the seminal work of [BGI+01] showed that it
is impossible to achieve an “virtual black-box” (VBB) obfuscation scheme that perfectly hides its
internals. Second, even forgetting about the security analysis, all known obfuscation schemes have
large polynomial blowup in the input size; there is no obfuscation scheme that even comes close to
a quadratic blowup, let alone subquadratic. This clearly does not meet our efficiency requirement.

Our idea to solve this efficiency problem is to break up one big circuit into a network of smaller
circuits to obfuscate, through the use of a quasilinear-sized routing network. In this routing network,
each gate has only polylogarithmically sized inputs and outputs, and there are O(n) such gates.
Now, if we obfuscate each gate separately and create a network of obfuscated gates, then the total
size of all obfuscated gates would be quasilinear.

It turns out that this idea would only work if the underlying routing network has a special
“obliviousness” property, that is, a corrupt sender cannot infer from its own route the destinations of
honest senders (see Definition B.1). Fortunately, we were able to get such a routing network using
known techniques from the oblivious sorting literature (although the notion of “obliviousness” there
is of a different nature).

New techniques for reasoning about a network of obfuscated programs. We now turn to
the challenges involved in reasoning about the security of “networked obfuscated programs”. To
solve these challenges, we develop techniques which we believe have potential to be useful in future
applications. In particular, when the output of one obfuscated gate is fed into another, we want to
ensure that the adversary does not tamper with the output in between. To achieve this, we would
like to have each obfuscated gate authenticate its own outputs, and have the next obfuscated gate
verify the authentication information before proceeding to the computation.

As mentioned before, it is well-known that VBB obfuscation is impossible, and it is only possible
to achieve a much more restrictive notion called indistinguishability obfuscation (iO). iO achieves a
much weaker notion of security: it only guarantees that obfuscations of two functionally equivalent
programs are indistinguishable. As is evident from prior works, computationally secure primitives
are generally incompatible with the functional equivalence requirements of iO. Therefore, we need
to develop new iO-compatible techniques for authentication.

A new notion of somewhere-statistically-unforgeable signatures. To this end, one of our
contributions is to introduce a new building block called a Somewhere Statistically Unforgeable
(SSU) signature scheme. Informally, in an SSU signature scheme, there are three modes to sample
the signing and verification keys: normal mode, punctured mode, and the binding mode.
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• Normal mode: the signing and verification keys behave same as in standard digital signatures.

• Punctured mode: the signing key is punctured w.r.t. a set of points X but the verification key
is normal. Intuitively, this means that no valid signature can be computed using the signing
algorithm for points outside of the set X when using the punctured signing key.

• Binding mode: here, both the signing and verification keys are binding w.r.t. a sets of points
X. Intuitively, this means that, with overwhelming probability, no valid signatures exist for
points outside of the set X w.r.t. a randomly sampled binding verification key. In other words,
this means that statistical unforgeability holds somewhere (points outside the set X) in the
binding mode.

SSU signatures can be used to sign/verify tuples of the form (t,m), where t denotes a round and
m denotes a message. For a fixed round t∗ and message m∗, we specifically focus on a set Xt∗,m∗

which contains pairs (t,m) as follows:

• For all t ̸= t∗, (t,m) ∈ Xt∗,m∗ for all m ∈ {0, 1}len.

• For t = t∗, there is a single pair (t∗,m∗) ∈ Xt∗,m∗ , and for all m′ ̸= m∗, (t∗,m′) /∈ Xt∗,m∗ .

Intuitively, we can use this restriction to restrict the behavior of the network of circuits during
the challenge round t∗. Note that both the round t∗ and the message m∗ must be fixed when
generating the keys of the signature scheme, hence (among other reasons) why the techniques here
achieve a selective notion of security for the NIAR scheme.

For our network of iO proof to go through, we need the following important property from the
SSU signature. We require that the distributions to be computationally indistinguishable:(

punctured signing key,
normal verification key

)
≡c

(
binding signing key,

binding verification key

)
This property is critical when we perform a layer-by-layer hybrid argument in our proofs.

We stress that for technical reasons explained below, this property is important for our “networked
obfuscated programs” techniques to work. This property also differentiates our SSU signature
scheme from previous known puncturable signature schemes [HIJ+17,BSW16,GWZ22]. The main
difference from previous puncturable signature schemes is that we need the two verification keys to
be indistinguishable even in the presence of some signing key, whereas the previous schemes required
that the two verification keys be indistinguishable in absence of any signing key.

We show how to construct such a SSU signature scheme from puncturable PRFs, single-point
binding (SPB) signatures, and single-point binding (SPB) hash functions 3. In Section 2.4, we
provide some intuition of how we constuct such SSU signatures. We know how to construct
puncturable PRFs from one-way functions [GGM86,BW13,BGI14,KPTZ13], SPB signatures from
one-way functions [GWZ22], and SPB hash function from indistinguishability obfuscation or leveled
fully homomorphic encryption [GWZ22]. Plugging in these instantiations, we obtain the following
theorem which may be of independent interest:

Theorem 2.1 (Informal: SSU signatures). Assuming the existence of one-way functions and
indistinguishability obfuscation, or assuming leveled fully homomorphic encryption, there exists a
somewhere statistically unforgeable signature scheme for the family of sets Xt∗,m∗ defined above.

3Informally speaking, SPB signatures have a special single-point binding property which states that it is possible
to generate a special verification key w.r.t. a message m∗ s.t. it only accepts a single signature for m∗. Similarly, SPB
hash functions have a special single-point binding property which states that it is possible to generate a special hash
key w.r.t. a message m∗ s.t. no hash collisions exist on m∗.
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Network of iOs: proof highlight. We sketch our proof outline, focusing on the part that makes
use of the aforementioned property of our SSU signature. In our construction, a ciphertext encrypts
the message as well as the route it should be sent along. Imprecisely speaking then, each gate
does the following: decrypts the incoming ciphertexts and verifies the input message signature (to
authenticate the message) and route signature (to authenticate the route); and if valid, it performs
the routing, encrypts the output messages (along with the routing information), and uses an output
signing key to sign them. Our proof goes through a sequence of hybrids sketched below4.

• First, starting from the real-world experiment, through a sequence of hybrids, we hard-wire the
route signatures on corrupt wires (which are shared across all time steps) — we defer the details
of these hybrids to the subsequent technical sections so we can focus on the part of proof that
uses aforementioned property of our SSU signatures.

• Next, through a layer-by-layer hybrid sequence, we want to switch to a world in which for
challenge time step t∗, honest and filler wires’ ciphertexts and signatures (for both messages and
routes) are hard-wired in the obfuscated gate and the obfuscated gate only accepts an incoming
ciphertext that matches the hiredwired one. Except for the honest-to-corrupt wires in the last
layers which are hard-wired encryptions of the actual messages to be received by the corrupt
receiver, for all other honest/filler wires, the hired-wired ciphertexts are encryptions of fillers.
In this new world, the challenge ciphertexts for honest senders are also random encryptions of
fillers; therefore, for the challenge time step t∗, the adversary’s view contains no information
about honest-to-honest and honest-to-corrupt routes, as well as honest-to-honest messages.

As described below, this layer-by-layer hybrid is where we critically need the aforementioned
security property from the SSU signatures.

– Assuming that layer i’s input verification key is already switched to binding, we can then
switch layer i’s output signing key to a punctured signing key by using iO security (since the
binding verification key already ensure that the punctured messages will never pass through);

– Next, we make the following replacement by relying on the security of the SSU signature
scheme:

(punctured signing key: layer i, normal verification key: layer i+ 1)

=⇒ (binding signing key: layer i, binding verification key: layer i+ 1)

– At this moment, by relying on iO security, we can hard-wire the ciphertexts and signatures
for t∗ on honest/filler wires, such that the obfuscated gate only accepts the input on the wire
if it matches the hard-wired value.

2.2 Removing the Selective Challenge Restriction

Recall that the techniques above are able to achieve a limited notion of security, which we call
“selective single-challenge” security. The selective notion requires that the adversary submit not
just two permutations π(0) and π(1) upfront, but additionally commit to both a challenge round

t∗ and the set {x(0)u,t∗ , x
(1)
u,t∗}u∈HS

of challenge plaintexts to be used during round t∗ for the honest
senders HS , two for each honest sender. Recall that we use the SSU signature scheme above, and

4Our formal proof in the technical sections actually first proves single, selective-challenge, static security only for
an adversary subject to the following restrictions: it must corrupt all receivers, and submit two permutations that
differ by a single inversion. We prove that even this weaker version is sufficient for our upgrade all the way to full
security under adaptive corruption.
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we puncture the signing and verification keys at round t∗ and at the target plaintexts, which we
hardcode in the obfuscated gates during the inner hybrids. This is essentially why we need this
data upfront.

Standard complexity leveraging fails. The standard tool to achieve such a transformation
is complexity leveraging. Namely, to run the adaptive-query single-challenge with the selective

scheme, we guess the values t∗ and {x(0)u,t∗ , x
(1)
u,t∗}u∈HS

at the beginning of the experiment. This
incurs a security loss proportional to 2α, where α is the number of bits needed to represent t∗ and

{x(0)u,t∗ , x
(1)
u,t∗}u∈HS

. We stress that due to our efficiency requirements, complexity leveraging fails
completely even if we are willing to accept the (sub-)exponential loss in the security reduction. More
specifically, α can be as large as O(n), which means that the selective-secure NIAR scheme would
have to be 2O(n)-secure for the reduction to be meaningful. Thus we must adopt a security parameter
greater than n in all the underlying primitives, including the iO scheme, resulting in poly(n) cost
and thus defeating our efficiency goals. This problem seems inherent with our techniques, because as

explained above, we hardcode information about each x
(b)
u,t∗ for all honest u in the obfuscated gates.

Removing the selective challenge restriction through equivalence to single-inversion
security. For removing the selective challenge restriction, our key insight is to define a single-
inversion notion of NIAR security, and using single-inversion security as a stepping stone. In normal
NIAR security (under static corruption), we want security to hold for two arbitrary admissible
permutations. In single-inversion security, we consider two admissible permutations where only a
pair of honest senders’ destinations are swapped.

If we can prove equivalence to single-inversion security, then we can do the selective-query to
adaptive-query upgrade for single-inversion security. In this case, a standard complexity leveraging
argument has only polynomial security loss as explained below. Specifically, with single-inversion
security, the reduction only needs to guess the challenge time step t∗ and the challenge plaintexts
of the two swapped honest users in the two worlds — without loss of generality, we can assume
that each sender’s plaintext is a single bit, since we can always get a multi-bit scheme by parallel
composition of multiple single-bit schemes. Further, we assume that the reduction is given an upper
bound on the p.p.t. adversary’s running time. Therefore, the space of the guesses is polynomially
bounded.

The remaining technicality is proving equivalence to single-inversion security. At first sight,
it might be tempting to conclude that this is obvious, since given π(0) and π(1), we can always
swap a pair of honest senders at a time to eventually transform π(0) to π(1). However, correctly
implementing this idea is subtle. Specifically, we need any pair of adjacent hybrids to be not
trivially distinguishable by the adversary, where the adversary is subject to the admissibility rules
of the beginning and the end hybrids. We prove that given any beginning and end hybrids, we can
indeed construct a sequence of intermediate hybrids, each time swapping a pair of honest senders’
destinations and their messages, such that each pair of adjacent hybrids satisfy the aforementioned
constraint.

2.3 Achieving Security for Adaptive Corruptions

So far, we have constructed a NIAR scheme that achieves security under static corruptions but
adaptive queries. The last question remaining is how to upgrade the scheme to get security even
under adaptive corruptions.

A first idea that comes to mind is to again attempt complexity leveraging. Again, unfortunately,
due to our efficiency requirements, complexity leveraging completely does not work even if we
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are willing to suffer from (sub-)exponential losses in the reduction. Suppose that the reduction
guesses which set of players the adversary will corrupt. Since there are 2n possible guesses, for
the parameters to work in the complexity leveraging, we must adopt a security parameter that is
greater than n in the underlying iO scheme, which results in at least poly(n) blowup.

A new compiler for upgrading to adaptive corruptions. Instead of complexity leveraging, we
construct a new compiler that compiles a NIAR scheme secure under static corruption to a NIAR
scheme secure under adaptive corruption, with only polynomial loss in the security reduction.

The compiler is very simple: each sender will first encrypt their plaintext using a PRF that is
secure against selective opening (which is implied by standard PRF security as shown by Abraham
et al. [ACD+19]), before encrypting it using the NIAR scheme that is secure under static corruption.
For proving that this construction secure against adaptive corruptions, we will go through the
following key steps:

• First, suppose we want to prove single-inversion security when all the receivers are corrupt. Now,
when the reduction receives the two permutations π(0) and π(1), it may assume that only the
inverted pair of senders are honest. Therefore, in this case, security under adaptive corruption is
the same as security under static corruption.

• Next, still assuming that all receivers are corrupt, we want to prove security under adaptive
corruption for any two arbitrary permutations. For this step, we need to prove the equivalence of
security under two arbitrary permutations and single-inversion security, but now for the scenario
when the senders can be adaptively corrupted. The technicalities in this proof are similar to
the counterpart for the static corruption case; however, the argument becomes somewhat more
involved now that the senders can be adaptively corrupt.

• Finally, we show how to remove the assumption where the receivers must be all corrupted
upfront, and allow the adversary to adaptively corrupt the receivers. This step will rely on the
selective-opening security of the PRF which is implied by standard PRF security [ACD+19].

2.4 SSU Signature Construction

In this section, we give an informal overview of our SSU signature construction. Our scheme is
inspired by the well-known Merkle signature scheme [Mer79] which can upgrade a one-time signature
scheme such as Lamport signatures [Lam79] to a multi-use signature. Recall that the Merkle
signature construction works as follows:

• There is a signing key and verification key pair (for a one-time signature scheme) at every node
u in the tree denoted (sku, vku), and the pair (sku, vku) are sampled using PRFk(u). The final
verification key is vkroot, and the secret signing key is (k, skroot).

• To sign a new message m, pick the next unused leaf, and consider the path from the root to
the leaf. Let {vk0 = vkroot, vk1, vk2, . . . , vkd} be the verification keys corresponding to nodes
on the path from the root to the selected leaf, and let {vk′1, . . . , vk′d} denote the verification
keys for the siblings of these nodes. The signer uses sk0 to sign H(vk1, vk

′
1), uses sk1 to sign

H(vk2, vk
′
2), and so on where we use H(·) to denote a hash function. Finally, use skd to sign

hash of the actual message H(m). The resulting signature contains all d+1 signatures as well as
{vk1, vk′1, . . . , vkd, vk′d}.

• Verification is done in the most natural manner.
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Recall that we want to construct an SSU signature scheme for the set Xt∗,m∗ , such that in the
binding mode, the only message that can be signed for the time step t∗ is m∗. We will modify the
Merkle signature scheme as follows:

• Imagine that each leaf of the tree corresponds to some time step t. To sign a message x under
the time step t, the signer will use the leaf node corresponding to t.

• We use a punctured PRF instead of a standard PRF to generate the (vku, sku) pair for every
tree node u.

• Instead of an arbitrary one-time signature scheme, we want to use a one-time signature scheme
with a single-point binding (SPB) property, that is, there is a binding setup which takes a
message m∗ as input, and generates a verification key vk∗ such that the only message that can
pass verification is m∗; and moreover, a computationally bounded adversary cannot tell that vk∗

is generated using the binding mode.

• Instead of using a normal hash function H(·), we will use a single-point binding (SPB) hash
function. We will create one SPB hash instance per level of the tree, and include the hash keys
in both the signing and verification keys. An SPB hash function has a binding setup mode that
takes m∗ as input and generates a binding hash key hk∗ such that m∗ does not have any collision;
moreover, a computationally bounded adversary cannot tell that hk∗ is a binding key.

Punctured key. To puncture the signing key such that one can sign only x∗ at t∗, puncture the
PRF key such that one is unable to compute the signing and verification key pairs on the path from
the root to the leaf t∗. Additionally, we can use the unpunctured key to pre-sign the message m∗

and t∗ and include this signature in the punctured signing key.

Binding key. For the binding-mode setup, we want to generate a binding signing key and a binding
verification key such that for t∗, only the message x∗ has a unique valid signature. The binding mode
also punctures the PRF key in the same way as the punctured mode. However, for the path from the
root to the leaf at t∗, we no longer generate the (sku, vku) honestly by using the unpunctured PRF
key. Instead, we will call the binding setup of the SPB signatures and SPB hashes. Specifically, on
the path from the root to the leaf t∗, we will run the binding setup algorithms of the SPB signature
scheme such that at the leaf t∗, we can only sign hash of t∗||x∗; and at any non-leaf node on the
path, we can only sign a unique hash (of the two children’s verification keys). Further, we run
the binding setup algorithms of the SPB hash functions, such that at level i of the tree, the pair
(vki, vk

′
i) to be hashed has no collisions, where (vki, vk

′
i) are verification keys corresponding to the

level-i node on the path to leaf t∗ (recall that vki is generated using the binding mode of the SPB
signature), and its sibling. After we generate all these keys, we again pre-sign (t∗, x∗) using these
keys.

As a result, the binding verification key is vkroot and the hash keys which are generated using the
binding mode of the SPB signature and hash schemes; and the binding signing key is the punctured
PRF key, as well as the pre-signed signature for (t∗,m∗), and the binding hash keys.

Formal description and proofs. We defer the formal description of the SSU signature and its
proofs to Section 5 and Appendix C.

Organization of rest of the paper. In Section 3, we define NIAR, and in Section 4 and Appendix B,
we present preliminaries. In Section 5, we define SSU signatures and in Appendix C, we present
a construction along with proofs of correctness and security. In Section 6, we construct a NIAR
scheme secure against a static and all-receiver-corrupting adversary and present the security proof
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in Appendices D and E. In Appendix F, we present a compiler that transforms the above NIAR
scheme to one with full security, i.e., removing the static and all-receiver-corrupting restrictions
on the adversary. In Appendices H and I, we show that this compiler also works for differentially
anonymous and sender insider protection settings. In Appendix G, we present the impossibility of
NIAR simulation security for adaptive corruptions.

3 Definitions for NIAR

In this section, we define the syntax and security for NIAR, focusing on the strongest definition of
full security against adaptive corruptions.

3.1 Syntax

We begin with the syntax. A Non-Interactive Anonymous Router (NIAR) is a cryptographic scheme
consisting of the following, possibly randomized algorithms:

• ({eku}u∈[n], {rku}u∈[n], tk)← Setup(1λ, len, n, π): the trusted Setup algorithm takes the security

parameter 1λ, the length of the messages len, the number of senders/receivers n, and a permuation
π. The algorithm outputs a sender key for each sender denoted {eku}u∈[n], a receiver key for
each receiver denoted {rku}u∈[n], and a token for the router denoted tk.

• ctu,t ← Enc(eku, xu,t, t): sender u uses its sender key eku to encrypt the message xu,t ∈ {0, 1}len
where t denotes the current time step. The Enc algorithm produces a ciphertext ctu,t.

• (ct′1,t, ct
′
2,t, . . . , ct

′
n,t)← Rte(tk, ct1,t, ct2,t, . . . , ctn,t): the routing algorithm Rte takes pk and its

token tk (which encodes some permutation π), and n ciphertexts received from the n senders
denoted ct1,t, ct2,t, . . . , ctn,t, and produces transformed ciphertexts ct′1,t, ct

′
2,t, . . . , ct

′
n,t where ct′u,t

is destined for the receiver u ∈ [n].

• x ← Dec(rku, ct
′
u,t, t): the decryption algorithm Dec takes a receiver key rku, a transformed

ciphertext ct′u,t, a time step t, and outputs a message x.

Correctness of NIAR. Correctness requires that with probability 1, the following holds for
any λ, len ∈ N, any (x1, x2, . . . , xn) ∈ {0, 1}len·n, and any t: let ({eku}u∈[n], {rku}u∈[n], tk) ←
Setup(1λ, len, n, π), let ctu,t ← Enc(eku, xu, t) for u ∈ [n], let (ct′1,t, ct

′
2,t, . . . , ct

′
n,t) ← Rte(tk,

ct1,t, ct2,t, . . ., ctn,t), and let x′u ← Dec(rku, ct
′
u,t, t) for u ∈ [n]; it must be that x′π(u) =

xu for every u ∈ [n].

3.2 NIAR Full Security

In this section, we present a security notion for NIAR against a very strong adversary. In particular,
we allow such an adversary to (a) adaptively corrupt the set of senders and receivers, and (b)
adaptively ask for encryptions of chosen plaintext under the senders’ keys that are not yet corrupted.
Our security definition is a strict generalization of the “receiver-insider corruption” notion introduced
by Shi and Wu [SW21] which captured only static corruptions of users.

We formalize our definition via the experiment NIARFullb,A which is parametrized by some
challenge bit b and a stateful non-uniform p.p.t. adversary A. At the beginning of the experiment,
adversary A submits two challenge permutations π(0) and π(1) over [n] for its choice of n. At any
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time in the experiment, the adversary can choose to corrupt a sender or receiver, and it will receive
the secret key for the newly corrupted player. The adversary receives tk, and then in each time step,

it can submit two plaintext vectors {x(0)u,t , x
(1)
u,t}u∈HS

for the set of currently honest senders HS . The
challenger will encrypt the plaintexts indexed by b ∈ {0, 1}, and at the end of the experiment, the
adversary’s job is to distinguish which world b the challenger is in. The adversary must be subject
to a set of admissibility rules such that it cannot trivially distinguish which world it is in.

More formally, our full NIAR security game is defined as follows, where Cor(·) is the following
oracle: upon receiving a sender or receiver identity,

• return its corresponding secret key;

• in case the newly corrupted player is a sender, additionally return all the historical random coins
consumed by the Enc algorithm during the previous time steps;

• update the honest sender set HS and honest receiver set HR accordingly.

NIAR full security experiment NIARFullb,A(1λ).

1. (n, len, π(0), π(1))← A(1λ).

2. HS = [n], HR = [n].

3. ({eku}u∈[n], {rku}u∈[n], tk)← Setup(1λ, len, n, π(b)).

4. For t = 1, 2, . . .:

• if t = 1: {x(0)u,t , x
(1)
u,t}u∈HS

← ACor(·)(tk);

else {x(0)u,t , x
(1)
u,t}u∈HS

← ACor(·)({CTu,t−1}u∈HS
).

• for all u ∈ HS , CTu,t ← Enc(eku, x
(b)
u,t, t).

5. At any time, A may halt and output an arbitrary function of its view. The experiment then also
halts and returns the output of A.

In the above definition, if the adversary wants to specify an initially corrupt set, it can simply
make calls to the corruption oracle Cor(·) at the beginning of t = 1. Therefore, without loss of
generality, we may assume that the initially corrupt set before the challenger calls Setup is empty.

Admissibility. We state some admissibility rules on the adversary to make sure that the adversary
cannot trivially distinguish whether it is in world b = 0 or b = 1. Our admissibility rule corresponds
to the “receiver-insider protection” version of Shi and Wu [SW21], which is sufficient for building
a non-interactive anonymous shuffler. Basically, we assume that senders know their receivers but
receivers do not know their senders. Therefore, if the adversary corrupts some senders, the adversary
will know the corrupt senders’ receivers. We remark that Shi and Wu [SW21] additionally described
a “full insider protection” notion where it is assumed that neither senders nor receivers know who
they are paired with. Their “full insider protection” construction requires polynomial in n evaluation
time and uses indistinguishable obfuscation and bilinear group assumptions [SW21]. It remains an
open question how to reduce the evaluation time for the “full insider protection” version.

Henceforth, if a player remains honest at the end of the execution, we say that it is eventually
honest; otherwise we say that it is eventually corrupt. We say that A is admissible iff with probability
1, the following holds where HS and HR refer to the eventually honest sender and receiver set, and
define KR = [n] \ HR,KS = [n] \ HS to be the eventually corrupt sender and receiver sets:
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1. For all eventually corrupt senders u ∈ KS , π
(0)(u) = π(1)(u).

2. For any eventually corrupt sender u ∈ KS , for any t in which u was not corrupt yet, x
(0)
u,t = x

(1)
u,t .

In other words, here we require that in the two alternate worlds b = 0 or b = 1, every eventually
corrupt sender should be sending the same message in all rounds before it was corrupted.

3. For all rounds t, and for any v ∈ KR ∩ π(0)(HS) = KR ∩ π(1)(HS), x
(0)
u0,t

= x
(1)
u1,t

where for

b ∈ {0, 1}, ub := (π(b))−1(v). In other words, here we require that in the two alternate worlds
b = 0 or 1, every eventually corrupt receiver receiving from an eventually honest sender must
receive the same message in all rounds.

Definition 3.1 (NIAR full security). We say that a NIAR scheme is fully secure iff for any non-
uniform p.p.t. admissible A, its views in the two experiments NIARFull0,A(1λ) and NIARFull1,A(1λ)
are computationally indistinguishable.

4 Preliminaries

Whenever we refer to an adversary in the paper henceforth, we implicitly mean it to be a non-uniform
adversary. We discuss the notations next and defer the additional preliminaries to Appendix B.

4.1 Notations

We say that a function negl : N → R is negligible, if for every constant c > 0 and for all
sufficiently large λ ∈ N we have negl(λ) < λ−c. Two distribution ensembles {Xλ

0 }λ and {Xλ
1 }λ are

computationally indistinguishable if for every p.p.t. adversary A, there exists a negligible function
negl(·) such that for all λ ∈ N, |Pr[x ← Xλ

0 : A(x) = 0] − Pr[x ← Xλ
1 : A(x) = 0]| ≤ negl(λ). We

use ‘ ’ to denote that a value is irrelevant. For instance, in (a, , c) the second value is irrelevant
and can be anything. Often times, we use a short hand {yi : i ∈ [n]} to denote an ordered sequence
(y1, . . . , yn). For instance, {yi : i ∈ [n]} ← f(t, {xi : i ∈ [n]}) means (y1, . . . , yn)← f(t, x1, . . . , xn).

5 Somewhere Statistically Unforgeable (SSU) Signatures

In this section, we define SSU signatures and provide an informal construction.

5.1 Definition

We consider an SSU signature scheme where the signing and verification algorithms both take a
counter t (i.e., time step) in addition to the message x to be signed. We refer to t as the round.
Specifically, an SSU signature scheme contains the following algorithms:

• (sk, vk, pp) ← Setup(1λ, tlen, len): takes as input the security parameter 1λ, the length of the
round tlen ≥ 0, the length of the messages to be signed len > 0, and outputs a signing key sk, a
verification key vk, and a public parameter pp.

• σ ← Sign(pp, sk, t, x): a deterministic algorithm that takes as input a public paramter pp,
a singing key sk, along with a round t ∈ {0, 1}tlen (t = ⊥ in case tlen = 0) and a message
x ∈ {0, 1}len and outputs a signature σ for x w.r.t. t.

• (0 or 1)← Vf(pp, vk, t, x, σ): takes as input a public paramter pp, a verification key vk, a round
t, a message x, and a signature σ, and outputs either 1 for accept or 0 for reject.
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• (sk, s̃k, vk, pp)← PuncturedSetup(1λ, tlen, len, t∗, x∗): takes as input the security parameter 1λ,
the length of the round tlen, the length of the messages to be signed len, a round t∗ ∈ {0, 1}tlen
(t∗ = ⊥ in case tlen = 0) and a message x∗ ∈ {0, 1}len, and outputs a signing key sk, a punctured
signing key s̃k, a verification key vk, and a public paramter pp.

• (sk∗, vk∗, pp∗) ← BindingSetup(1λ, tlen, len, t∗, x∗): takes as input the security parameter 1λ,
the length of the round tlen, the length of the messages to be signed len, a round t∗ ∈ {0, 1}tlen
(t∗ = ⊥ in case tlen = 0) and message x∗ ∈ {0, 1}len, and outputs a binding signing key sk∗, a
binding verification key vk∗, and a binding public paramter pp∗.

• σ ← PSign(pp, s̃k, t, x): a deterministic algorithm that takes as input a public paramter pp,
a punctured signing key s̃k generated by PuncturedSetup, a round t and a message x, and
outputs a signature σ for x w.r.t. t.

Correctness of SSU signature. An SSU signature is said to be correct iff the following holds,

• For all λ, len, tlen ∈ N, t ∈ {0, 1}tlen, x ∈ {0, 1}len,

Pr

[
(sk, vk, pp)← Setup(1λ, tlen, len)

σ ← Sign(pp, sk, t, x)
: Vf(pp, vk, t, x, σ) = 1

]
= 1.

• For all λ, len, tlen ∈ N, t∗, t ∈ {0, 1}tlen, x∗, x ∈ {0, 1}len such that it is not the case that t = t∗

and x ̸= x∗,

Pr

[
(sk, s̃k, vk, pp)← PuncturedSetup(1λ, tlen, len, t∗, x∗) :

Sign(pp, sk, t, x) = PSign(pp, s̃k, t, x)

]
= 1.

Definition 5.1 (Security for SSU Signatures). An SSU signature is said to be secure if it has the
following properties:

• Identical distribution of normal keys output by Setup and PuncturedSetup. For
any λ, len, tlen ∈ N, any t∗ ∈ {0, 1}tlen, any x∗ ∈ {0, 1}len, we have the following where ≡
denotes identical distribution:

{(sk, vk, pp)← Setup(1λ, tlen, len) : output (sk, vk, pp)}

≡{(sk, s̃k, vk, pp)← PuncturedSetup(1λ, tlen, len, t∗, x∗) : output (sk, vk, pp)}

• Indistinguishability of punctured and binding setups. For any len and tlen that are
polynomially bounded by λ, any t∗ ∈ {0, 1}tlen, any x∗ ∈ {0, 1}len, we have the following where
≈ denotes computational indistinguishability:

{(sk, s̃k, vk, pp)← PuncturedSetup(1λ, tlen, len, t∗, x∗) : output (s̃k, vk, pp)}
≈{(sk∗, vk∗, pp∗)← BindingSetup(1λ, tlen, len, t∗, x∗) : output (sk∗, vk∗, pp∗)}

• Statistical unforgeability at (t∗, x∗). For any len, tlen that are polynomially bounded in λ,
there exists a negligible function negl(·), such that for any t∗ ∈ {0, 1}tlen, x∗ ∈ {0, 1}len, for
any λ,

Pr

[
(sk∗, vk∗, pp∗)← BindingSetup(1λ, tlen, len, t∗, x∗) :

∃ (σ, x) s.t. x ̸= x∗ ∧ Vf(pp∗, vk∗, t∗, x, σ) = 1

]
≤ negl(λ),

Pr

[
(sk∗, vk∗, pp∗)← BindingSetup(1λ, tlen, len, t∗, x∗) :

∃ σ ̸= PSign(pp∗, sk∗, t∗, x∗) s.t. Vf(pp∗, vk∗, t∗, x∗, σ) = 1

]
≤ negl(λ).
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5.2 SSU Signatures: Informal Construction

Let Σ = (Σ.Gen,Σ.Sign,Σ.Vf ,Σ.GenBind) be a single-point binding (SPB) signature scheme.
Let H = (H.Gen,H.Hash,H.GenBind) be a single-point binding (SPB) hash function. Let PPRF
be a puncturable PRF. The SSU signature scheme is based on a binary tree of SPB signatures
intuitively described in Figures 1a and 1b. We present the formal construction in Appendix C.

sib3u3

u0

t = 0,       1,       2,       3,       4,       5,       6,       7.

σ3 = Sign( sku3 , Hash( hk3 , t || x ) )

σ2 = Sign( sku2 , Hash( hk2 , vku3 || vksib3 ) )

σ1 = Sign( sku1 , Hash( hk1 , vksib2 || vku2 ) )

σ0 = Sign( sku0 , Hash( hk0 , vku1 || vksib1 ) )

u1
sib1

u2
sib2

hk0

hk1

hk2

hk3

Level 0

Level 1

Level 2

Level 3

(a) Sign and PuncturedSetup. For each node ui, (skui , vkui) is generated using Σ.Gen with
PPRF.Eval(K, ui) as the randomness seed. A signature σ on message x for t = 2 consists of

σ := ((σ0, vku1 , vksib1), (σ1, vku2 , vksib2), (σ2, vku3 , vksib3), σ3). PuncturedSetup at the point (t, x) outputs a

punctured key s̃k that consists of the PPRF key punctured at the set {u0, u1, u2, u3} and σ.

sib3u3

u0

t = 0,       1,       2,       3,       4,       5,       6,       7.

( vku3 , σ3 ) = GenBind( Hash( hk3 , t || x ) )

( vku2 , σ2 ) = GenBind( Hash( hk2 , vku3 || vksib3 ) )

( vku1 , σ1 ) = GenBind( Hash( hk1 , vksib2 || vku2 ) )

( vku0 , σ0 ) = GenBind( Hash( hk0 , vku1 || vksib1 ) )

sib2 u2

u1
sib1

hk0 = GenBind( vku1 || vksib1 )
Level 0

Level 1

Level 2

Level 3

hk1 = GenBind( vksib2 || vku2 )

hk2 = GenBind( vku3 || vksib3 )

hk3 = GenBind( t || x )

(b) BindingSetup. For nodes ui ∈ {u0, u1, u2, u3}, (vkui , σu) is generated using Σ.GenBind with
PPRF.Eval(K, ui) as the randomness seed. BindingSetup at the point (t, x) outputs a binding key sk∗ that
consists of the PPRF key punctured at the set {u0, u1, u2, u3} and a signature σ on message x for t = 2,

where σ := ((σ0, vku1 , vksib1), (σ1, vku2 , vksib2), (σ2, vku3 , vksib3), σ3).

Figure 1: SSU Signatures informal construction

6 NIAR for a Static and All-Receiver-Corrupting Adversary

In this section, we first introduce a basic NIAR scheme which we prove secure under an adversary
who is restricted to make all corruption queries upfront, and moreover, it must always corrupt all
receivers — we call such an adversary a static, all-receiver-corrupting adversary. This is same as the
adversary in the full security game in Definition 3.1 except with the aforementioned restrictions.
For sake of completeness, we define this version of security in Definition A.1.

Later in Appendix F, we give a compiler that transforms the scheme in this section to one with
full security, i.e., removing the static and all-receiver-corrupting restrictions on the adversary.

Notation. To describe our construction more formally, it will be helpful to introduce some notation

18



for the routing network. Recall that a routing network for n senders and n receivers is a layered
directed acyclic graph that has O(log n) layers numbered from 0, 1, . . . , L. Each sender u ∈ [n] is
assigned to the (2u− 1)-th wire in the input layer (i.e., layer-0), and each receiver v ∈ [n] is assigned
to the (2v − 1)-th wire in the output layer (i.e., layer-L). Let G be the number of gates contained
in each of the L− 1 intermediate layers. There are (L− 1) ·G gates overall, and we refer to the
g-th gate in the ℓ-th layer by the tuple (ℓ, g) ∈ [L− 1]× [G]. Let W = O(log2 λ) be the number of
incoming and outgoing wires in each gate. Overall, there are L× [2n] wires where we index the i-th
wire in the ℓ-th layer by the tuple (ℓ, i) ∈ [L]× [2n].5 We refer to the W incoming wires of every
gate (ℓ, g) by the set Input(ℓ,g) ⊆ [2n] and the W outgoing wires by the set Output(ℓ,g) ⊆ [2n]. In
other words, the wires coming into gate (ℓ, g) are the set {(ℓ, w)}w∈Input(ℓ,g) , and the wires outgoing
from gate (ℓ, g) are the set {(ℓ+1, w)}w∈Output(ℓ,g) . Finally, recall that a route rteu from sender u to
receiver v is a sequence of wires (j1, . . . , jL) where jℓ is a wire in the ℓ-th layer for all ℓ ∈ [L]. Based
on the description of routing network, also recall that j1 = 2u− 1 ∈ [2n] and jL = 2v − 1 ∈ [2n].

6.1 Construction

Simplifying assumption. Throughout this section, we shall assume that the message length
len = 1. This assumption is without loss of generality, since we can always parallel-compose multiple
NIAR schemes where len = 1 to get a NIAR scheme for len > 1.

We now describe our basic NIAR scheme in detail.

Keys associated with wires. In our construction, each wire (ℓ, i) in the routing network will
have the following associated with it:

• A PRF key k(ℓ,i), which will be used to encrypt and decrypt the (signed) message along with its
routing information on the wire;

• A message signing key tuple (mpp(ℓ,i),msk(ℓ,i),mvk(ℓ,i)), which will later be used by the corre-
spending sender or obfuscated gate to sign the message to be sent to the wire;

• A route signing key tuple (rpp(ℓ,i), rsk(ℓ,i), rvk(ℓ,i)), which will be used by the Setup algorithm to
sign the routes and by the obfuscated gates to verify the routes before performing the routing.

5To be more precise there are c · n wires in each layer for constant c ≥ 2, but for simplicity we assume c = 2 as this
is achieved by our proposed instantiation.
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Hardcoded values. Gate(ℓ,g) has hardcoded the following values:

• For each wire i ∈ Input(ℓ,g) in layer ℓ: k(ℓ,i), mpp(ℓ,i), mvk(ℓ,i), rpp(ℓ,i), rvk(ℓ,i).

• For each wire i ∈ Output(ℓ,g) in layer ℓ+ 1: k(ℓ+1,i), mpp(ℓ+1,i), msk(ℓ+1,i).

Procedure. Gate(ℓ,g) takes as input a round t and a set of ciphertexts {CT(ℓ,i) : i ∈ Input(ℓ,g)}
corresponding to the input wires. It computes as follows.

1. For each input wire i ∈ Input(ℓ,g):

(a) If ℓ = 1 and i is even, continue to next i. // Filler, ignored.

(b) Decrypt and authenticate the message/route:

i. Compute y = CT(ℓ,i) ⊕ PRF(k(ℓ,i), t) and parse y as (x, rte,msig).

ii. Abort if Sig.Vf(mpp(ℓ,i),mvk(ℓ,i), t, (x, rte),msig) = 0.

iii. If x = ⊥filler and rte = ⊥filler, continue to the next i. // Filler, ignored.

iv. Parse rte as (rte, rsig), rte as (j1, . . . , jL), and rsig as (rsig1, . . . , rsigL). Abort if jℓ
≠ i or the next hop jℓ+1 /∈ Output(ℓ,g) or Sig.Vf(rpp(ℓ,i), rvk(ℓ,i), 1, rte, rsigℓ) = 0.

(c) Prepare the output ciphertext CT(ℓ+1,jℓ+1):

i. For convenience, set j = jℓ+1.

ii. If CT(ℓ+1,j) has already been computed, then abort.

iii. Else if ℓ+ 1 < L (intermediate layer), first compute a new message signature
msig′ = Sig.Sign(mpp(ℓ+1,j),msk(ℓ+1,j), t, (x, rte)). Then, compute the ciphertext
CT(ℓ+1,j) = (x, rte,msig′)⊕ PRF(k(ℓ+1,j), t).

iv. Else if ℓ + 1 = L (output layer), compute the ciphertext CT(L,j) = x ⊕
PRF(k(L,j), t).

2. For each j ∈ Output(ℓ,g) such that CT(ℓ+1,j) has not been computed yet, compute filler
ciphertexts:

(a) Set x = ⊥filler and rte = ⊥filler.

(b) Compute msig′ = Sig.Sign(mpp(ℓ+1,j),msk(ℓ+1,j), t, (x, rte)).

(c) Compute CT(ℓ+1,j) = (x, rte,msig′)⊕ PRF(k(ℓ+1,j), t).

3. Output {CT(ℓ+1,i) : i ∈ Output(ℓ,g)}.

Figure 2: The circuit Gate(ℓ,g).

Circuit for each gate. We first describe the circuit for each gate to be obfuscated later in our
construction. The circuit Gate(ℓ,g) denotes the g-th gate in the ℓ-th layer. It receives a ciphertext
on each input wire and decrypts it using a PRF key to obtain a tuple (x, rte,msig), where x is a
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message, rte is the authenticated route, and msig is a message signature. It verifies the message
signature msig on the tuple (x, rte). Next, it performs route authentication and prepares the output
ciphertext which varies depending on whether the wire is filler or not. A wire is filler if x = ⊥filler

and rte = ⊥filler. For a filler input wire, no route authentication is performed as there is no route
associated with it. Computing output ciphertext for filler output wires is deferred to later as the
circuit does not know which are filler output wires at the moment. For a non-filler input wire i,
the circuit parses rte = (rte, rsig) and verifies that the route rte is valid using rsig. Then, it parses
rte = (j1, . . . , jL). If jℓ = i, then it finds the corresponding non-filler output wire jℓ+1 from the rte
and computes a new message signature msig′ and then a new ciphertext for the output wire in the
natural manner. At the end, all output wires which do not have any ciphertext assigned to them are
interpreted as filler wires and the circuit computes message signature and ciphertext similarly by
setting x = ⊥filler and rte = ⊥filler. In Figure 2 we describe the circuit formally and in more detail,
where Sig is a SSU signature scheme constructed in Section 5 and PRF is a puncturable PRF.

We next describe the Setup algorithm.

Setup Algorithm. Given a routing permutation π, the Setup algorithm first sets tlen = log2(λ).
Then, it runs the AssignRoutes algorithm to sample a set of edge-disjoint routes {rteu}u∈[n] between
each sender/receiver pair. Then, for every wire (ℓ, i) ∈ [L]× [2n] in the routing network we sample
(a) PRF key k(ℓ,i) for encryption, (b) a signature key pair (rsk(ℓ,i), rvk(ℓ,i), rpp(ℓ,i)) for signing routes,
and (c) a signature key pair (msk(ℓ,i),mvk(ℓ,i),mpp(ℓ,i)) for signing messages. Looking ahead, when
proving security, the route signature keys for wires assigned to corrupt senders’ routes, and the
message signature keys for all other wires will be punctured to ensure “uniqueness of routes and
plaintexts”.

Given the above set of keys, consider a sender/receiver pair (u, v) with route rteu = (j1, . . . , jL).
Then sender u’s sender key eku and receiver v’s decryption key rkv are defined as follows, where
rsigℓ is the signature on rteu computed using the route public param rpp(ℓ,jℓ) and route signing key
rsk(ℓ,jℓ).

eku =
(
k(1,j1),mpp(1,j1),msk(1,j1), rteu = (rteu, rsigu = (rsig1, . . . , rsigL))

)
, rkv = k(L,jL) .

Lastly, the routing token tk is then defined as follows, where the circuit Gate(ℓ,g) is as described
in Figure 2.

tk = {iO(Gate(ℓ,g)) : (ℓ, g)× [L− 1]× [G]} .

More formally, the Setup algorithm is as in Figure 3.
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Setup(1λ, len = 1, n, π): on inputs the security parameter 1λ, the individual message length
len = 1, the number of parties n, and the permutation π, Setup does the following:

1. Set tlen = log2(λ).

2. Sampling Routes: Run the AssignRoutes procedure (Appendix B.1) on inputs (1λ, n, π).
Abort if it outputs ⊥. Else parse the output as a set of edge-disjoint routes {rteu}u∈[n]
between each sender/receiver pair. Let 0, . . . , L be the layers in the resulting network.
Let G be the number of gates contained in each of the L− 1 intermediate layers. Let W
be the number of incoming and outgoing wires in each gate. Then, for all u ∈ [n], the size
of the string rteu is lenrte = L · log(2n).

3. Sampling Wire Keys: For each wire (ℓ, i) in [L]× [2n]:

(a) Sample PRF key k(ℓ,i) ← PRF.Gen(1λ) as the encryption key for this wire.

(b) To sign and verify routes of length lenrte, sample route signature keys

(rsk(ℓ,i), rvk(ℓ,i), rpp(ℓ,i))← Sig.Setup(1λ, 0, lenrte) .

Suppose that the resulting route signatures will be of size polyrsig(λ) for some
polynomials polyrsig. Then, the messages signed will be of length lenm = tlen+1+L ·
log(2n) + L · polyrsig(λ). To sign and verify messages of length lenm, sample message
signature keys

(msk(ℓ,i),mvk(ℓ,i),mpp(ℓ,i))← Sig.Setup(1λ, tlen, lenm) .

4. Signing Routes: For each sender u ∈ [n] do the following:

(a) Parse rteu = (j1, . . . , jL). Sign rteu using route signing keys for each wire along rteu,
that is, for ℓ ∈ [L] compute rsigℓ = Sig.Sign(rpp(ℓ,jℓ), rsk(ℓ,jℓ), 1, rte).

(b) Set rteu = (rteu, rsigu = (rsig1, . . . , rsigL)).

5. Setting Routing Token:

(a) For each merge-split gate (ℓ, g) in [L − 1] × [G], compute an indistinguishability
obfuscation Gate(ℓ,g) ← iO(1λ,Gate(ℓ,g)) of the circuit Gate(ℓ,g) described in Figure 2.

(b) Set tk = {Gate(ℓ,g) : ℓ ∈ [L− 1], g ∈ [G]}.

6. Setting Sender Keys: For each u ∈ [n], set eku = (k(1,j1),mpp(1,j1),msk(1,j1), rteu).

7. Setting Receiver Keys: For each v ∈ [n], set rkv = k(L,2v−1).

8. Output ({eku}u∈[n], {rku}u∈[n], tk).

Figure 3: The Setup algorithm

Next, we describe how encryption, routing and decryption work.
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Encryption Algorithm. For a sender u to send a message x to its receiver for time step t, the
sender first computes a message signature msig for the tuple (x, rteu) for round t, and encrypts the
tuple (x, rteu,msig) using its PRF key.

Enc(eku, xu, t) on input user u’s encryption key eku and plaintext xu and the round t, does the
following:

1. Parse eku as (k,mpp,msk, rteu).

2. Compute the message signature msig = Sig.Sign(mpp,msk, t, (xu, rteu)).

3. Compute the ciphertext CTu = (xu, rteu,msig)⊕ PRF(k, t).

4. Output CTu.

Routing Algorithm. The router receives a routing token tk from the Setup algorithm. It consists
of obfuscation of each gate in the routing network as described in Figure 2. During each round t, the
router receives n ciphertexts CT1, . . . ,CTn from the n senders. Before processing the ciphertexts
through the routing network, the router sets the 2n ciphertexts CT(1,1), . . . ,CT(1,2n) for the first
layer as follows. For all i ∈ [n], it sets CT(1,2i−1) = CTi as the real ciphertexts and CT(1,2i) = ⊥filler

as the filler ciphertexts, where ⊥filler is a special string. Next, the router uses the token tk to route
the 2n ciphertexts in the first layer through the routing network to obtain the 2n ciphertexts in the
last layer L: CT(L,1), . . . ,CT(L,2n). Finally, to all receivers i ∈ [n], the router sends the ciphertexts
CT′

i = CT(L,2i−1). More formally,

Rte(tk, t,CT1,CT2, . . . ,CTn) on input the router token tk along with the round number t, and
ciphertexts CT1, . . . ,CTn, does the following:

1. Parse tk = {Gate(ℓ,g) : ℓ ∈ [L− 1], g ∈ [G]}.

2. Compute ciphertexts for the input layer:

(a) For all k ∈ [n], set CT(1,2k−1) = CTk. // Real ciphertexts

(b) For all k ∈ [n], set CT(1,2k) = ⊥filler. // Filler ciphertexts

3. Compute network of iO obfuscated gates layer-by-layer, that is, for layer ℓ = 1, . . . , L− 1,
evaluate all the obfuscated gates at this layer as follows. For each g ∈ [G], let Input(ℓ,g)
and Output(ℓ,g) be the set of input and output wires of gate Gate(ℓ,g). Then, evaluate the
circuit

{CT(ℓ+1,i) : i ∈ Output(ℓ,g)} = Gate(ℓ,g)(t, {CT(ℓ,i) : i ∈ Input(ℓ,g)}).

4. Output (CT′
1 = CT(L,1),CT

′
2 = CT(L,3), . . . ,CT

′
n = CT(L,2n−1)).

Decryption Algorithm. A receiver u learns its intended message by just decrypting the received
ciphertext using its PRF key. More formally,
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Dec(rku,CT
′
u, t) on input user u’s receiver key rku, output ciphertext CT

′
u, and a time step t,

does the following: Output y = CT′
u ⊕ PRF(rku, t).

6.2 Efficiency Analysis

Recall that we assume len = 1 since for multi-bit messages, since we can always parallel-compose
multiple NIAR schemes where len = 1 to get a NIAR scheme for len > 1. In the analysis below,
we argue that the router computation per time is bounded by Õλ(n) where Õλ hides poly(λ, log n)
factors for some fixed poly(·).

Recall that the routing network consists of layers 0, . . . , L, where L = O(log n). In each of
the L− 1 intermediate layers, there are G = 2n/W number of gates, where W = O(log2 λ) is the
number of incoming and outgoing wires in each gate.

Size of hardcoded values in each gate. Each incoming wire has the following hardcoded:
PRF key of size poly(λ), route public parameters of size poly(λ) and route verification key of size
poly(λ), message public parameters of size poly(λ) and message verification key of size poly(λ). Each
outgoing wire has the following hardcoded: PRF key of size poly(λ), message public parameters of
size poly(λ) and message signing key of size poly(λ, tlen) = poly(λ) as tlen = log2(λ).

Size of ciphertexts. Each route signature is of size polyrsig(λ). and each message signature is of size
polymsig(λ). Therefore, the ciphertexts are of size tlen+1+L · log(2n)+L ·polyrsig(λ)+polymsig(λ) =
poly(λ, log n).

Size and running time of each gate. Each gate has W incoming and outgoing wires and each
gate processes W ciphertexts, where W = O(log2 λ). Therefore, each gate has poly(λ) amount
of hardcoded information and processes poly(λ, log n) amount of inputs. Based on the operations
inside each gate, we can then conclude that each gate is of size poly(λ, log n). Then, accounting for
the polynomial blowup of the iO obfuscator, we can conclude that the size of each obfuscated gate
is still poly(λ, log n) and the router can run each obfuscated circuit in time poly(λ, log n).

Router computation per time step. Observe that for each time step, the router computes each
of the obfuscated circuits at most once. Since there are at most Õ(n) gates, we can conclude that
the router computation per time step is bounded by Õλ(n) where Õλ hides poly(λ, log n) factors for
some fixed poly(·).

Sender and recevier key sizes, computation and communication per time step. Sender
key size is bounded by the size of the route which is Õλ(1). For every sender, computation and
communication per time step is Õλ(1). Each receiver’s key contains a PRF key which is Oλ(1) in
size. For every receiver, computation and communication per time step is Oλ(1).

6.3 Static Security Theorem

In Appendices D and E, we prove the following theorem, which shows that the above construction
satisfies static security as long as the adversary always corrupts all receivers. In Appendix F, we
give a compiler that further compiles the scheme to one that satisfies full security under adaptive
corruptions, and without any restrictions on the adversary.

Theorem 6.1. Suppose PRF is a secure puncturable PRF, Sig is a secure deterministic SSU
signature scheme, and iO is a secure indistinguishability obfuscation scheme. Then, our NIAR
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construction in Section 6.1 satisfies full static corruption security (Definition A.1) subject to an
all-receiver-corrupting adversary.

We give a proof roadmap of Theorem 6.1 below.

Proof roadmap. We prove Theorem 6.1 through a sequence of steps.

• In Definition D.1, we define indistinguishability w.r.t. inversions against an adversary that
additionally satisfies the selective single-challenge restriction. Then, we present an Upgrade
Theorem stated in Theorem D.2 which shows how to remove the selective single-challenge and
inversion restrictions.

• Next, to complete the proof of Theorem 6.1, it suffices to prove security under the selective
single-challenge and single inversion restrictions. We show this in Theorem E.1.
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Appendix

A Definition: NIAR Security under Static Corruption

We review the full security notion under static corruption, defined first by Shi and Wu [SW21].
Henceforth, we use the notation KR and KS to denote the set of corrupt receivers and senders,
respectively; we use HS and HR to denote the set of honest senders and honest receivers, respectively.
Security is defined with respect to the following experiment, parametrized by a bit b ∈ {0, 1}, and a
stateful adversary A .

Static corruption experiment NIARStaticb,A(1λ).

1. (n, len,KS ,KR, π
(0), π(1))← A(1λ).

2. ({eku}u∈[n], {rku}u∈[n], tk)← Setup(1λ, len, n, π(b)).

3. ⊥ ← A(tk, {eku}u∈KS
, {rku}u∈KR

).

4. For t = 1, 2, . . .:

• {x(0)u,t , x
(1)
u,t}u∈HS

← A(⊥).

• for u ∈ HS , ctu,t ← Enc(eku, x
(b)
u,t, t)

• ⊥ ← A({CTu,t}u∈HS
).

5. At any time, A may halt and output an arbitrary function of its view. The experiment then also
halts and returns the output of A.

Admissibility. We say that A is admissible iff with probability 1, it guarantees that

1. For all u ∈ KS , π
(0)(u) = π(1)(u); and

2. For all rounds t, and for any u ∈ KR∩π(0)(HS) = KR∩π(1)(HS), x
(0)
v0,t

= x
(1)
v1,t

where for b ∈ {0, 1},
vb := (π(b))−1(u). In other words, here we require that in the two alternate worlds b = 0 or 1,
every corrupt receiver receiving from an honest sender must receive the same message.

Definition A.1 (Security against static corruptions). We say that a NIAR scheme satisfies security
against static corruption, iff for any non-uniform p.p.t. admissible A, its views in the two experiments
NIARStatic0,A(1λ) and NIARStatic1,A(1λ) are computationally indistinguishable.

B Additional Preliminaries

B.1 Routing Networks

Imagine we have a directed acyclic graph henceforth called a routing network with 2n sources
and 2n destinations. Suppose we have n producers, each of whom assigned to a distinct source
vertex. We also have n consumers, each of whom assigned to a distinct destination vertex. Suppose
that producer u ∈ [n] is assigned source vertex 2u − 1 ∈ [2n]. Suppose that consumer u ∈ [n] is
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assigned destination vertex 2u − 1 ∈ [2n]. Now, each producer wants to route one product to a
distinct consumer, and the desired mapping between the producers and consumers is called the
routing permutation π. Then, producer u is mapped to consumer π(u). In the routing network,
this translates to routing producer u’s product from source vertex 2u − 1 to destination vertex
2π(u) − 1. To avoid congestion, we want all n routes to be over edge-disjoint paths. Earlier
works [ACN+20,RS21] have constructed such a routing network with the following properties.

• Congestion-free routing. There exists a randomized algorithm AssignRoutes(1λ, n, π) that takes
in the security parameter λ and the routing permutation π, and with 1 − negl(λ) probability,
outputs the following information for each producer u ∈ [n]: the path that producer u traverses
to reach its consumer which is assigned to some destination vertex. Henceforth, the above
information is called the route for producer u, often denoted rteu. As mentioned, all producers’
routes are edge-disjoint. We allow the AssignRoutes(1λ, n, π) algorithm to have a negligibly small
failure probability in which case it outputs ⊥.

• Layered construction. The network is layered. We may imagine that the source and destination
vertices form two special layers numbered 0 and L, respectively, and all other intermediate-layer
vertices are henceforth called gates. Directed edges, henceforth called wires, exist only between
adjacent layers ℓ and ℓ+ 1.

• Efficiency. Each gate has W = O(log2 λ) incoming wires and W outgoing wires. The network
has O(log n) layers, and each intermediate layer has G = 2n/W gates. Each gate has O(log2 λ)
incoming wires and O(log2 λ) outgoing wires. The number of wires between any two adjacent
layers is exactly 2n.

• Obliviousness. The network and the corresponding AssignRoutes(1λ, n, π) algorithm satisfies a
privacy property. Informally speaking, imagine that a subset of the producers are corrupt, and
they can learn their routes to their respective destinations (including which source nodes the
corrupt producers are assigned to). We want that the choice of the corrupt producers’ routes are
independent of the honest producers’ destinations. We will formally define this privacy property
below.

Definition B.1 (Obliviousness of a routing network). We say that a routing network satisfies
obliviousness, iff there exists another simulated AssignRoutes∗ algorithm and a negligible function
negl(·), such that for any two routing permutations π0 and π1 on [n], let C(π0, π1) be the set of
senders that have the same destinations in π0 and π1, it holds that for either b ∈ {0, 1}, the following
two distributions have statistical distance at most negl(λ):

• Sample (rte1, . . . , rten)← AssignRoutes(1λ, n, πb), and output ({rteu}u∈C(π0,π1), {rteu}u∈[n]\C(π0,π1));

• Sample
(
{rteu}u∈C(π0,π1), {rte

β
u}u∈[n]\C(π0,π1),β∈{0,1}

)
← AssignRoutes∗(1λ, n, π0, π1), and output(

{rteu}u∈C(π0,π1), {rtebu}u∈[n]\C(π0,π1)

)
.

The definition says that the simulated AssignRoutes∗ algorithm takes in two routing permutations
π0 and π1. For a sender u ∈ C(π0, π1) with the same destinations in π0 and π1, AssignRoutes

∗

outputs a single route rteu for u. For a sender u /∈ C(π0, π1) with different destinations in π0 and
π1, AssignRoutes

∗ outputs two routes rte0u and rte1u for u. Not only so, for either b ∈ {0, 1}, the
union of the routes for senders’ in C(π0, π1), and the b-th set of routes {rtebu}u/∈C(π0,π1) for everyone
else output by the simulated AssignRoutes∗ must be statistically indistinguishable from running the
real-world AssignRoutes using permutation πb.
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Intuitively, in our NIAR scheme, only those who are in C(π0, π1) can possibly be corrupt.
Therefore, the definition decomposes the generation of the possibly-corrupt sender’ routes from
the remaining honest senders’ destinations. In this sense, the possibly-corrupt senders’ routes do
not leak information about honest senders’ destinations (beyond what is already leaked by the
possibly-corrupt senders’ destinations, and barring a negligibly small statistical difference).

Remark B.2. Our definition of obliviousness is not the same as the “data obliviousness” notion
of Asharov et al. [ACN+20] and Ramachandran and Shi [RS21] — their notion requires that the
access patterns of the routing algorithm not depend on the input data when executed on a RAM. On
the other hand, our notion is closely related to a line of work called “oblivious routing” from the
standard algorithms literature [R0̈2,HKLR05], where roughly speaking, we want that a player’s route
be independent of others’ destinations.

Interestingly, it turns out that we can obtain a routing network that satisfies Definition B.1
using techniques from Asharov et al. [ACN+20] and Ramachandran and Shi [RS21]. Asharov et
al. [ACN+20] and Ramachandran and Shi [RS21] propose a butterfly network where each gate has
polylogarithmically many incoming and outgoing wires. We can compose two instances of their
butterfly network back-to-back. The first instance is to route each input element (i.e., those on input
wires 2u− 1 for u ∈ [n]) to a random and distinct wire in the output layer. The second instance
will then route each element u to its correct destination, i.e., 2π(u)− 1 of the output layer.

In our routing network, there are more wires in each layer than the number of producers or
consumers. Therefore, some wires do not carry load. Henceforth in our paper, we also call such
wires that do not carry actual load filler wires.

B.2 Puncturable PRF

A puncturable pseudorandom function consists of the following algorithms:

• sk← Gen(1λ, 1ℓ): takes in a security parameter 1λ, the length 1ℓ of the input messages where
ℓ := ℓ(λ) is a polynomial function in λ, and outputs a PRF key K.

• σ ← Eval(K,x): a deterministic function that takes in a PRF key K, a message x ∈ {0, 1}ℓ, and
outputs the evaluation outcome σ.

• K∗ ← Puncture(K,S = {x∗1, . . . , x∗|S|}): takes in a PRF key K, the set of messages S =

{x∗1, . . . , x∗|S|} that the PRF key needs to be punctured on, and outputs a punctured key K∗.

• σ ← PEval(K∗, x): a deterministic function that takes in a punctured PRF key K∗, and a
message x ∈ {0, 1}len, outputs the evaluation outcome σ.

Correctness. We say that a puncturable PRF scheme satisfies correctness if the punctured key
preserves functionality when evaluated at unpunctured points. Formally, we require that for any
λ, ℓ, any S = {x∗1, . . . , x∗|S|}, any x ∈ {0, 1}len such that x /∈ S,

Pr

[
K ← Gen(1λ, ℓ),
K∗ ← Puncture(K,S)

: Eval(K,x) = PEval(K∗, x)

]
= 1

Security. We say that a puncturable PRF scheme is secure, if given a punctured key, the
original PRF’s evaluation outcomes at punctured points (i.e., points that the punctured key cannot
evaluate) remain pseudorandom. Formally, consider the following experiment ExptPPRFA,b(1λ, 1ℓ)
parametrized by a bit b ∈ {0, 1}:
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• The stateful adversary A sends a set S to the challenger. The challenger computes a PRF key
K ← Gen(1λ, 1ℓ). The challenger then computes the punctured key K∗ ← Puncture(K,S)
and sends it back to the adversary.

• The adversary A can adaptively make evaluation queries on messages xi /∈ S to the challenger.
For each such query, the challenger responds as follows. If b = 0, it sends Eval(K,xi) to the
adversary. If b = 1, it sends a uniformly random string to the adversary.

• A outputs a guess b′ ∈ {0, 1}, the experiment outputs b′.

Definition B.3 (Puncturable PRF security). We say that a puncturable PRF scheme is secure iff
for any ℓ polynomially bounded by λ, for any non-uniform p.p.t. adversary A, its views in the two
experiments ExptPPRFA,b(1λ, 1ℓ) and ExptPPRFA,b(1λ, 1ℓ) are computationally indistinguishable.

Theorem B.4 ( [GGM86,BW13,BGI14,KPTZ13]). If one-way functions exist, then for all efficiently
computable ℓ(λ), there exists a secure puncturable PRF.

Shorthand notations. Sometimes for we use PRF(K, ·) as a shorthand for PRF.Eval(K, ·) and
PRF(K∗, ·) as a shorthand for PRF.PEval(K∗, ·).

B.3 Single-Point Binding (SPB) Hash Function

Single-point binding hash functions were introduced and constructed in Guan et al. [GWZ22]
and Koppula et al. [KWZ22]. Here, we modify their defintion in that the GenBind algorithm
additionally also outputs a normal hash key. A single-point binding hash function is a triple
(Gen,Hash,GenBind) where:

• hk← Gen(1λ, 1ℓ): takes as input the security parameter λ, and input length ℓ. It produces a
hash key hk.

• h = Hash(hk,m ∈ {0, 1}ℓ): deterministically produces a hash digest h whose length is some
fixed polynomial in λ independent of ℓ.

• (hk, hk∗)← GenBind(1λ, 1ℓ,m∗ ∈ {0, 1}ℓ): takes as input λ, input length ℓ, and a message

m∗, and outputs a normal hash key h̃k and a binding hash key hk∗.

Correctness. An SPB hash function is said to be correct iff the following holds. For any ℓ which is
upper bounded by some fixed polynomial function in λ, there exists a negligible function negl(·)
such that for any m∗ ∈ {0, 1}ℓ, for any λ,

Pr

[
(hk, hk∗)← GenBind(1λ, 1ℓ,m∗) :

∃m ̸= m∗ s.t. Hash(hk,m) ̸= Hash(hk∗,m)

]
≤ negl(λ).

Security. An SPB hash function is said to be secure iff it satisfies the following properties.

• Identical distribution of normal hash keys. For any λ, ℓ,m∗ ∈ {0, 1}ℓ, we have the
following where ≡ denotes identical distribution.

{hk← Gen(1λ, 1ℓ) : output hk}
≡ {(hk, hk∗)← GenBind(1λ, 1ℓ,m∗) : output hk}
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• Indistinguishability of normal and binding hash keys. For all ℓ that is polynomially
bounded by λ, all m∗ ∈ {0, 1}ℓ, we have the following where ≈ denotes computational
indistinguishability.

{(hk, hk∗)← GenBind(1λ, 1ℓ,m∗) : output (m∗, hk)}
≈ {(hk, hk∗)← GenBind(1λ, 1ℓ, ,m∗) : output (m∗, hk∗)}

• Statistically binding at m∗. For any ℓ that is polynomially bounded in λ, there exists a
negligible function negl(·), such that for all λ, all m∗ ∈ {0, 1}ℓ,

Pr

[
(hk, hk∗)← GenBind(1λ, 1ℓ,m∗) :

∃m ̸= m∗ s.t. Hash(hk∗,m) = Hash(hk∗,m∗)

]
≤ negl(λ).

Instantiations. Guan et al. [GWZ22] provided two constructions of SPB hash functions, one from
indistinguishability obfuscation, and the other from leveled fully homomorphic encryption.

B.4 Single-Point Binding (SPB) Signatures

Single-point binding signatures were introduced and constructed in Guan et al. [GWZ22] and
Koppula et al. [KWZ22]. We will use it as a building block for our SSU signatures construction.
A single-point binding signature scheme is a quadruple of algorithms (Gen,Sign,Vf ,GenBind)
defined as follows:

• (sk, vk)← Gen(1λ, 1ℓ): is a randomized algorithm that takes as input the security parameter
λ and message length ℓ := ℓ(λ) which is a polynomial function in λ. It outputs a signing
key sk and a verification key vk whose lengths are upper bounded by some fixed polynomial
function in λ and ℓ.

• σ ← Sign(sk,m ∈ {0, 1}ℓ): is a deterministic algorithm that takes as input a signing key
sk and a message m. It outputs a signature σ whose length is upper bounded by a fixed
polynomial function in λ and ℓ.

• (0 or 1)← Vf(vk,m ∈ {0, 1}ℓ, σ): is a deterministic algorithm that takes as input a verification
key vk, a message m and a signature σ on m and outputs 1 if the signature is valid, else 0.

• (vk∗, σ∗)← GenBind(1λ, 1ℓ,m∗ ∈ {0, 1}ℓ): is a randomized algorithm that takes as input the
security parameter λ, message length ℓ, and a message m∗. It outputs a binding verification
key vk∗ and a signature σ∗ on message m∗.

Correctness. A single-point binding signature scheme is said to be correct iff the following holds.

• For all λ, ℓ ∈ N, and all m ∈ {0, 1}ℓ,

Pr[(sk, vk)← Gen(1λ, 1ℓ), σ ← Sign(sk,m) : Vf(vk,m, σ) = 1] = 1

• For all λ, ℓ ∈ N, and all m∗ ∈ {0, 1}ℓ,

Pr[(vk∗, σ∗)← GenBind(1λ, 1ℓ,m∗) : Vf(vk∗,m∗, σ∗) = 1] = 1
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Security. A single-point binding signature scheme is said to be secure if it has the following
properties:

• Indistinguishability of normal and binding keys. For any ℓ polynomially bounded by λ,
any m∗ ∈ {0, 1}ℓ, we have the following where ≈ denotes computational indistinguishability.

{(sk, vk)← Gen(1λ, 1ℓ), σ ← Sign(sk,m∗) : output (vk, σ)}
≈ {(vk∗, σ∗)← GenBind(1λ, 1ℓ,m∗) : output (vk∗, σ∗)}

• Statistically binding at m∗. For any ℓ polynomially bounded by λ, there exists a negligible
function negl(·) such that for all λ, and all m∗ ∈ {0, 1}ℓ,

Pr

[
(vk∗, σ∗)← GenBind(1λ, 1ℓ,m∗) :

∃ σ and m ̸= m∗ s.t. Vf(vk∗,m, σ) = 1

]
≤ negl(λ),

Pr

[
(vk∗, σ∗)← GenBind(1λ,m∗) :
∃ σ ̸= σ∗ s.t. Vf(vk∗,m∗, σ) = 1

]
≤ negl(λ).

This means that with overwhelming probability over the choice of the binding verification key
vk∗ output by GenBind, any message m ̸= m∗ does not have a valid signature that would be
accepted by vk∗. Further, there is a unique signature σ∗ for message m∗ that vk∗ accepts.

Instantiations. Guan et al. [GWZ22] provided low-rate and high-rate constructions of SPB
signature schemes. We will use the low-rate construction in this paper. Guan et al. [GWZ22] showed
how to construct low-rate SPB signature scheme assuming one-way functions.

B.5 Indistinguishability Obfuscation

The notion of indistinguishability obfuscation (iO) was first defined in [BGI+01]. Recent works have
shown constructions from well-founded assumptions [JLS21,GP20,WW20,BDGM20]. We give the
formal definition below, taken almost verbatim from Jain et al. [JLS21].

Definition B.5 (Indistinguishability Obfuscator (iO)). A uniform p.p.t. algorithm iO is called an
indistinguishability obfuscator for polynomial-sized circuits if the following holds:

• Completeness: For every λ ∈ N, every circuit C with input length n, every input x ∈ {0, 1}n,
we have that

Pr
[
C ′(x) = C(x) : C ′ ← iO(1λ, C)

]
= 1.

• Polynomial Security: For any two ensembles {C0,λ}λ, {C1,λ}λ of polynomial-sized circuits
that have the same size, input length, and output length, and are functionally equivalent (i.e.,
C0,λ(x) = C1,λ(x) for every λ and x), the distributions {iO(1λ, C0,λ)}λ and {iO(1λ, C1,λ)}λ are
computationally indistinguishable.

B.6 Compression Lemma

In our proof for impossibility of fully simulation security of NIAR, we use the compression lemma
that was formalized in earlier works [DTT10,GT20] which roughly means that it is impossible to
compress every element in a set with cardinality c to a string less than log c bits long, even relative
to a random string. We state the compression lemma here as a proposition.
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Proposition B.6. Suppose there is an (not necessarily efficient) encoding procedure Encode :
X ×R → Y and a (not necessarily efficient) decoding procedure Decode : Y ×R → X such that

Pr
x∈X ,r∈R

[Decode(Encode(x, r), r) = x] ≥ ϵ,

then log |Y| ≥ log |X | − log (1/ϵ).

B.7 Selective Opening Security for PRFs

In our adaptive corruption scheme, we need a PRF that is secure against selective opening attacks.
The definition of such a PRF was given in the work of Abraham et al. [ACD+19]. Moreover, they
showed that the standard PRF security notion implies selective opening security except with a
polynomial loss in the security failure probability.

Specifically, selective opening security is defined as follows, borrowing verbatim from Abraham
et al. [ACD+19].

We consider a selective opening adversary that interacts with a challenger. The adversary can
request to create new PRF instances, query existing instances with specified messages, selectively
corrupt instances and obtain the secret keys of these instances, and finally, we would like to claim
that for instances that have not been corrupt, the adversary is unable to distinguish the PRFs’
evaluation outcomes on any future message from random values from an appropriate domain. More
formally, we consider the following game between a challenger C and an adversary A.

PRFExptAb (1
λ): A(1λ) can adaptively interact with C through the following queries:

• Create instance. The challenger C creates a new PRF instance by calling the honest PRF
key generation algorithm Gen(1λ). Henceforth, the instance will be assigned an index that
corresponds to the number of “create instance” queries made so far. The i-th instance’s secret
key will be denoted ski.

• Evaluate. The adversary A specifies an index i that corresponds to an instance already created
and a message m, and the challenger computes r ← PRFski(m) and returns r to A.

• Corrupt. The adversary A specifies an index i, and the challenger C returns ski to A (if the i-th
instance has been created).

• Challenge. The adversary A specifies an index i∗ that must have been created and a message m.
If b = 0, the challenger returns a completely random string of appropriate length. If b = 1, the
challenger computes r ← PRFski∗ (m) and returns r to A.

We say that A is admissible iff with probability 1, every challenge tuple (i∗,m) it submits
satisfies the following: 1) A does not make a corruption query on i∗ throughout the game; and 2) A
does not make any evaluation query on the tuple (i∗,m).

Definition B.7 (Selective opening security of a PRF family). We say that a PRF scheme satisfies
pseudorandomness under selective opening iff for any admissible non-uniform p.p.t. adversary A, its
views in PRFExptA0 (1

λ) and PRFExptA1 (1
λ) are computationally indistinguishable.

C SSU Signatures: Construction and Proof

In this section we show how how to construct SSU Signatures and provide the security proof of the
construction.
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C.1 SSU Signatures Construction

Let Σ = (Σ.Gen,Σ.Sign,Σ.Vf ,Σ.GenBind) be a single-point binding (SPB) signature scheme as
defined in Appendix B.4. Let H = (H.Gen,H.Hash,H.GenBind) be a single-point binding (SPB)
hash function as in Appendix B.3. Let PPRF be a puncturable PRF.

The SSU signature scheme is based on a binary tree of SPB signatures intuitively described
in Figures 1a and 1b in Section 5.2. Formally, consider a binary tree of depth tlen+ 1 consisting
of levels 0, 1, . . . , tlen. At level tlen, there are 2tlen leaf nodes, each corresponding to a time step
t ∈ {0, 1}tlen based on the binary representation of t.

We describe the structure of this binary tree next.

• Every node has a unique identifier denoted as either ui or sibi in Figures 1a and 1b.

• At level 0, there is a root node u0 whose associated SPB signature key tuple (sku0 , vku0) will
be computed during the Setup algorithm.

• Each intermediate or leaf node ui will also have an associated SPB signature key tuple that can
be computed on the fly using the PPRF key K. The keys will be computed as (skui , vkui) =
Σ.Gen(1λ, 1ℓ;PPRF.Eval(K, ui)). Here, we use the notation Σ.Gen(1λ, 1ℓ;PPRF.Eval(K, ui))
to mean running the Σ.Gen(1λ, 1ℓ) algorithm and seeding its random tape with the coins
generated by PPRF.Eval(K, ui).

• Each level j ∈ {0, 1, . . . , tlen} also has a hash key hkj associated with it that will be computed
during Setup.

The SSU signature scheme is as follows. Recall that the SPB hash outputs a hash digest whose
length is a fixed polynomial in λ, and independent of the input length — henceforth let ℓh(λ) denote
this length. Let ℓvk(λ) be the length of the verification key when we run Σ.Gen(1λ, 1ℓh(λ)).

Setup(1λ, tlen, len):

1. Compute (sku0 , vku0)← Σ.Gen(1λ, 1ℓh(λ)).

2. Compute K ← PPRF.Gen(1λ, 1tlen+1).

3. For j ∈ {0, . . . , tlen − 1}, sample hkj ← H.Gen(1λ, 12ℓvk(λ)). Finally, sample hktlen ←
H.Gen(1λ, 1len+tlen).

4. Output sk = (sku0 ,K), vk = vku0 and pp = {hkj}j∈{0,...,tlen}.

Sign(pp, sk, t, x):

1. Parse pp = {hkj}j∈{0,...,tlen} and sk = (sku0 ,K).

2. Let the nodes on the path from the root to t (excluding the root u0) be u1, . . . , utlen and let
their siblings be sib1, . . . , sibtlen as illustrated in Figure 1a.

3. For all j ∈ [tlen]: compute (skuj , vkuj ) = Σ.Gen(1λ, 1ℓh(λ);PPRF.Eval(K, uj)) and (sksibj , vksibj ) =

Σ.Gen(1λ, 1ℓh ;PPRF.Eval(K, sibj)).
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4. Compute α0, . . . , αtlen as follows:

αj =


vkuj+1

||vksibj+1
if j ̸= tlen and jth-bit of t is 0,

vksibj+1
||vkuj+1

if j ̸= tlen and jth-bit of t is 1,

t||x if j = tlen.

5. Sign the hash of the message αtlen with the signing key of the leaf node utlen corresponding to
t and also sign the hash of the verification keys of the nodes and their siblings (denoted αj for
level j + 1) on the path (excluding root node) from root to t by their parent’s signing key
(denoted skuj for level j) as follows.

for all j ∈ {0, . . . , tlen}: σj = Σ.Sign(skuj ,H.Hash(hkj , αj)).

6. Output σ = ((σ0, vku1 , vksib1), . . . , (σtlen−1, vkutlen , vksibtlen), σtlen).

Vf(pp, vk, t, x, σ):

1. Let the nodes on the path (excluding root node) from root to t be u1, . . . , utlen and let their
siblings be sib1, . . . , sibtlen.

2. Parse σ = ((σ0, vku1 , vksib1), . . . , (σtlen−1, vkutlen , vksibtlen), σtlen), vk = vku0 , and pp = {hkj}j∈{0,...,tlen}.

3. Compute α0, . . . , αtlen as described in step 4 of Sign algorithm.

4. Output 1 iff all the following checks pass, else output 0.

for all j ∈ {0, . . . , tlen}: Σ.Vf(vkuj ,H.Hash(hkj , αj), σj) = 1.

PuncturedSetup(1λ, tlen, len, t∗, x∗):

Compute (sk, vk, pp) just like in Setup algorithm. We spell out the details below for completeness.

1. Compute (sku0 , vku0)← Σ.Gen(1λ, 1ℓh(λ)).

2. Compute K ← PPRF.Gen(1λ, 1tlen+1).

3. For j ∈ {0, . . . , tlen− 1}, let hkj ← H.Gen(1λ, 12ℓvk(λ)); and let hktlen ← H.Gen(1λ, 1len+tlen).

4. Let sk = (sku0 ,K), vk = vku0 , pp = {hkj}j∈{0,...,tlen}.

Compute signature σ̃ on (t∗, x∗) just like in Sign algorithm. We spell out the details below for
completeness.

5. Let the nodes on the path (excluding root node) from root to t∗ be u1, . . . , utlen and let their
siblings be sib1, . . . , sibtlen.

6. For all j ∈ [tlen], compute (skuj , vkuj ) = Σ.Gen(1λ, 1ℓh(λ);PPRF.Eval(K, uj)), and (sksibj , vksibj ) =

Σ.Gen(1λ, 1ℓh(λ);PPRF.Eval(K, sibj)).

7. Compute α0, . . . , αtlen as described in step 4 of Sign algorithm.
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8. Compute the signature on (t∗, x∗) and the signatures on the verification keys of the nodes and
their siblings on the path (excluding root node) from root to t∗:

for all j ∈ {0, . . . , tlen}: σ̃j = Σ.Sign(skuj ,H.Hash(hkj , αj))

9. Let σ̃ = ((σ̃0, vku1 , vksib1), . . . , (σ̃tlen−1, vkutlen , vksibtlen), σ̃tlen).

Puncture the PRF key and compute the outputs.

10. Compute K∗ ← PPRF.Puncture(K, {uj}j∈{0,1,...,tlen}) as the punctured PRF key.

11. Let s̃k = (σ̃, t∗, x∗,K∗). Output (sk, s̃k, vk, pp).

BindingSetup(1λ, tlen, len, t∗, x∗):

1. Let the nodes on the path (excluding root node) from root to t∗ be u1, . . . , utlen and let their
siblings be sib1, . . . , sibtlen.

2. Compute K ← PPRF.Gen(1λ, 1tlen+1) and K∗ ← PPRF.Puncture(K, {uj}j∈{0,1,...,tlen}).

3. For all j ∈ [tlen], compute (sksibj , vksibj ) = Σ.Gen(1λ, 1ℓh(λ);PPRF.Eval(K, sibj)).

4. Compute the binding keys and associated signatures in the following sequence:

• Let α∗
tlen = t∗||x∗.

• Compute (hktlen, hk
∗
tlen)← H.GenBind(1λ, 1len+tlen, α∗

tlen).

• Compute (vk∗utlen , σ
∗
tlen) = Σ.GenBind(1λ, 1ℓh(λ),H.Hash(hk∗tlen, α

∗
tlen)).

• For j = tlen− 1, . . . , 0 in decreasing order:

– Let α∗
j =

{
vk∗uj+1

||vksibj+1
if jth-bit of t is 0

vksibj+1
||vk∗uj+1

if jth-bit of t is 1
.

– Compute (hkj , hk
∗
j )← H.GenBind(1λ, 12ℓvk(λ), α∗

j ).

– Compute (vk∗uj , σ
∗
j ) = Σ.GenBind(1λ, 1ℓh(λ),H.Hash(hk∗j , α

∗
j )).

5. Let σ∗ = ((σ∗
0, vk

∗
u1 , vksib1), . . . , (σ

∗
tlen−1, vk

∗
utlen

, vksibtlen), σ
∗
tlen).

6. Let sk∗ = (σ∗, t∗, x∗,K∗), vk∗ = vk∗u0 , pp
∗ = {hk∗j}j∈{0,...,tlen}.

7. Output (sk∗, vk∗, pp∗).

PSign(pp, s̃k, t, x):

1. Parse pp = {hkj}j∈{0,...,tlen}. and s̃k = (σ̃, t∗, x∗,K∗). Let the nodes on the path (excluding
root node) from root to t∗ be u∗1, . . . , u

∗
tlen and let their siblings be sib∗1, . . . , sib

∗
tlen. Then,

σ̃ = ((σ̃0, vku∗1 , vksib
∗
1
), . . . , (σ̃tlen−1, vku∗tlen , vksib

∗
tlen
), σ̃tlen).

2. If t = t∗ and x = x∗, output σ̃.

3. Else if t = t∗ and x ̸= x∗, output ⊥.
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4. Else, compute the signature as follows:

• Let the nodes on the path (excluding root node) from root to t be u1, . . . , utlen and let
their siblings be sib1, . . . , sibtlen. Suppose that the bit description of t and t∗ match in
the first z ∈ {0, . . . , tlen− 1} indices, that is, for j ∈ [z], uj = u∗j and sibj = sib∗j . Further,
uz+1 = sib∗z+1 and sibz+1 = u∗z+1.

• For all j ∈ [z + 1], choose vksibj from s̃k. If z ̸= tlen− 1, then, for all j ∈ [tlen] \ [z + 1]:

compute (sksibj , vksibj ) = Σ.Gen(1λ, 1ℓh(λ);PPRF.PEval(K∗, sibj)).

• For all j ∈ [z], choose vkuj from s̃k. For all j = [tlen] \ [z]: compute (skuj , vkuj ) =

Σ.Gen(1λ, 1ℓh(λ);PPRF.PEval(K∗, uj)).

• Compute α0, . . . , αtlen as described in step 4 of Sign algorithm.

• Compute the signature on (t, x) and the signatures on the verification keys of the nodes
and their siblings on the path (excluding root node) from root node to t as follows.

for all j ∈ {z + 1, . . . , tlen}: σj = Σ.Sign(skuj ,H.Hash(hkj , αj))

for all j ∈ {0, . . . , z}: σj = σ̃j

• Output σ = ((σ0, vku1 , vksib1), . . . , (σtlen−1, vkutlen , vksibtlen), (σtlen, t, x)).

Key and signature sizes. In the above algorithm, the size of various keys and signatures are as
follows:

• |sk| = |sku0 |+ |K| = poly(λ, tlen) for some fixed polynomial poly.

• |vk| = |vk∗| = ℓvk(λ).

• |pp| = |pp∗| = (tlen+ 1) · poly(λ) for some fixed polynomial poly.

• |σ| = |σ̃| = |σ∗| = (tlen+ 1) · poly(λ) for some fixed polynomial poly.

• |s̃k| = |sk∗| = len+ poly(λ, tlen) for some fixed polynomial poly.

We prove the correctness of the above construction in Appendix C.2. Next, we present the main
theorem statement of security of the above construction. We prove this theorem in Appendix C.3.

Theorem C.1. Suppose that PPRF is a secure puncturable PRF, Σ is a secure SPB signature
scheme, and H is a secure SPB hash function. Then, the construction in Appendix C.1 is a secure
SSU signature scheme (See Definition 5.1).

We know how to construct puncturable PRFs from one-way functions [GGM86,BW13,BGI14,
KPTZ13], SPB signatures from one-way functions [GWZ22], and SPB hash function from indis-
tinguishability obfuscation or leveled fully homomorphic encryption [GWZ22]. Plugging in these
instantiations, we obtain the following corollary.

Corollary C.2 (Restatement of Theorem 2.1). Assuming the existence of one-way functions and
indistinguishability obfuscation, or assuming leveled fully homomorphic encryption, there exists a
somewhere statistically unforgeable signature scheme.

40



C.2 Correctness of Construction

For proving correctness, we need to show two things and we do them below.

First correctness requirement: we need to show that for all λ, len, tlen ∈ N, t ∈ {0, 1}tlen, x ∈
{0, 1}len,

Pr

[
(sk, vk, pp)← Setup(1λ, tlen, len)

σ ← Sign(pp, sk, t, x)
: Vf(pp, vk, t, x, σ) = 1

]
= 1.

Recall that Vf outputs 1 if all the following checks pass.

for all j ∈ {0, . . . , tlen}: Σ.Vf(vkuj ,H.Hash(hkj , αj), σj) = 1

If σ is honestly computed using the Sign algorithm, then, we have that

for all j ∈ {0, . . . , tlen}: σj = Σ.Sign(skuj ,H.Hash(hkj , αj)).

As the H.Hash algorithm of SPB hash function H is deterministic, therefore the values H.Hash(hkj , αj)
computed by Sign and Vf are the same. Then, all the verification checks will passs if the SPB
signature scheme Σ satisfies correctness.

Second correctness requirement: we need to show that for any λ, len, tlen ∈ N, t∗, t ∈ {0, 1}tlen,
x∗, x ∈ {0, 1}len such that it is the case that either (t = t∗ and x = x∗) or (t ̸= t∗), then the following
holds true:

Pr

[
(sk, s̃k, vk, pp)← PuncturedSetup(1λ, tlen, len, t∗, x∗) :

Sign(pp, sk, t, x) = PSign(pp, s̃k, t, x)

]
= 1.

For the case (t = t∗ and x = x∗), observe that Sign(pp, sk, t, x) computes σ = ((σ0, vku1 , vksib1), . . . ,

(σtlen−1, vkutlen , vksibtlen), (σtlen, t, x)). On the other hand, PSign(pp, s̃k, t, x) computes σ̃ = ((σ̃0, vku1 , vksib1),

. . . , (σ̃tlen−1, vkutlen , vksibtlen), σ̃tlen) from s̃k. Notice that σ̃ is computed by PuncturedSetup in ex-
actly the same as σ by the Sign algorithm. Thus, the second correctness requirement is satisfied in
this case.

For the case (t ̸= t∗), let the nodes on the path (excluding root node) from root to t be
u1, . . . , utlen and let their siblings be sib1, . . . , sibtlen. Let t and t∗ have the same bit description upto
first z bits for some z ∈ {0, 1, . . . , tlen− 1}.

• For j ∈ [z + 1]: PSign chooses the verification key vksibj of the sibling sibj from s̃k but Sign
computes it on the fly. By the same argument as in the case of (t = t∗ and x = x∗), these
verification keys are nevertheless the same.

• For j ∈ [tlen] \ [z + 1]: PSign computes the keys (sksibj , vksibj ) of the sibling sibj us-
ing PPRF.PEval(K∗, sibj) as the random tape for Σ.Gen. But, Sign computes it us-
ing PPRF.Eval(K, sibj) as the random tape for Σ.Gen. But note that K∗ is not punc-
tured on any of these sibling nodes. By correctness of puncturable PRFs, it follows that
PPRF.Eval(K, sibj) = PPRF.PEval(K∗, sibj). Therefore, the random tape used by Sign and
PSign for computing these keys is the same, and hence, the keys of these siblings are also the
same.

• For j ∈ [z]: PSign chooses vkuj from s̃k, but Sign computes them on the fly. By the same
argument as in the case (t = t∗ and x = x∗), these values are nevertheless the same.
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• For j ∈ [tlen]\[z]: PSign computes the keys (skuj , vkuj ) of the node uj using PPRF.Eval(K∗, uj)
as the random tape for Σ.Gen. But, Sign computes it using PPRF.PEval(K, uj) as the
random tape for Σ.Gen. But note that K∗ is not punctured on any of these nodes. By
correctness of puncturable PRFs, it follows that PPRF.Eval(K, uj) = PPRF.PEval(K∗, uj).
Therefore, the random tape used by Sign and PSign for computing these keys is the same,
and hence, the keys of these nodes are also the same.

• Observe then that Sign and PSign compute σtlen, σtlen−1, . . . , σz+1 exactly the same way as
Sign and PSign use the same the hash key and signing key for computing each of these
signatures. But σz, . . . , σ0 are computed differently by Sign and PSign. PSign chooses these
from s̃k, but Sign computes them on the fly. By the same argument as in the case (t = t∗

and x = x∗), these values are nevertheless the same.

Thus, the second correctness requirement is satisfied in this case as well.

C.3 Proof of Security

In this section, we give the formal proof of security for our SSU signature scheme.

Theorem C.3 (Restatement of Theorem C.1). Suppose that PPRF is a secure puncturable PRF, Σ
is a secure SPB signature scheme, and H is a secure SPB hash function. Then, the construction
in Appendix C.1 is a secure SSU signature scheme (See Definition 5.1).

To prove the above theorem, we need to prove multiple properties about the construction. We
do so in Lemmas C.4, C.5 and C.11.

Lemma C.4. The construction in Appendix C.1 satisfies identical distribution of normal keys
output by Setup and PuncturedSetup (See Definition 5.1).

Proof. We need to show that for any len and tlen that are polynomially bounded by λ, any
t∗ ∈ {0, 1}tlen, any x∗ ∈ {0, 1}len, we have the following where ≡ denotes identical distribution:

{(sk, vk, pp)← Setup(1λ, tlen, len) : output (sk, vk, pp)}

≡{(sk, s̃k, vk, pp)← PuncturedSetup(1λ, tlen, len, t∗, x∗) : output (sk, vk, pp)}

Observe that sk, vk, pp are computed by PuncturedSetup in steps 1 to 4. This is the same as
steps 1 to 4 of Setup. Hence, (sk, vk, pp) computed by PuncturedSetup and Setup are identically
distributed.

Lemma C.5. Suppose that PPRF is a secure puncturable PRF. Suppose that Σ is a SPB signa-
ture scheme that satisfies computational indistinguishability of normal and binding keys (See Ap-
pendix B.4). Suppose that H is a SPB hash function that satisfies (i) identical distribution of normal
hash keys and (ii)computational indistinguishability of normal and binding hash keys (See Ap-
pendix B.3). Then, the above construction satisfies computational indistinguishability of punctured
and binding setup (See Definition 5.1).

Proof. We need to prove that for any len and tlen that are polynomially bounded by λ, any
t∗ ∈ {0, 1}tlen, any x∗ ∈ {0, 1}len, we have the following where ≈ denotes computational indistin-
guishability:

{(sk, s̃k, vk, pp)← PuncturedSetup(1λ, tlen, len, t∗, x∗) : output (s̃k, vk, pp)}
≈{(sk∗, vk∗, pp∗)← BindingSetup(1λ, tlen, len, t∗, x∗) : output (sk∗, vk∗, pp∗)}
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Hencforth, we will denote the first distribution as D and the second distribution as D∗. Next, we
spell out the complete details of these two distributions.

Distribution D: Recall that the values computed by PuncturedSetup are vk = vku0 , pp =

{hkj}j∈{0,...,tlen}, and s̃k = (σ̃, t∗, x∗,K∗), where σ̃ = ((σ̃0, vku1 , vksib1), . . . , (σ̃tlen−1, vkutlen , vksibtlen), σ̃tlen).
Plugging in these values, D is the following.

{(σ̃0, vku1 , vksib1), . . . , (σ̃tlen−1, vkutlen , vksibtlen), σ̃tlen, t
∗, x∗,K∗, vku0 , {hkj}j∈{0,...,tlen}}

Rearranging some of the terms for ease of understanding of the changes later, we can rewrite the
distribution as follows.

D : {(vku0 , σ̃0, hk0), . . . , (vkutlen , σ̃tlen, hktlen), {vksibj}j∈[tlen], t
∗, x∗,K∗}

Here, for all j ∈ {0, . . . , tlen}, hkj is computed using H.Gen. Further, vku0 is computed using
Σ.Gen with its random tape containing uniformly random coins. For all j ∈ [tlen], vkuj is computed
using Σ.Gen with its random tape PPRF.Eval(K, uj).

Distribution D∗: Recall that the values computed by BindingSetup are vk∗ = vk∗u0 , pp
∗ =

{hk∗j}j∈{0,...,tlen}, and sk∗ = (σ∗, t∗, x∗,K∗), where σ∗ = ((σ∗
0, vk

∗
u1 , vksib1), . . . , (σ

∗
tlen−1, vk

∗
utlen

, vksibtlen), σ
∗
tlen).

Plugging in these values, D∗ is the following.

{(σ∗
0, vk

∗
u1 , vksib1), . . . , (σ

∗
tlen−1, vk

∗
utlen

, vksibtlen), σ
∗
tlen, t

∗, x∗,K∗, vk∗u0 , {hk
∗
j}j∈{0,...,tlen}}

Rearranging some of the terms as above, we can rewrite D∗ as follows.

D∗ : {(vk∗u0 , σ
∗
0, hk

∗
0), . . . , (vk

∗
utlen

, σ∗
tlen, hk

∗
tlen), {vksibj}j∈[tlen], t

∗, x∗,K∗}

D∗ differs from D in the terms highlighted in blue. In more detail, these are as follows. For all
j ∈ {0, . . . , tlen}, hk∗j is binding on the value α∗

j and is computed using H.GenBind. Further, vk∗u0
is binding on the value H.Hash(hk∗0, α

∗
0) and is computed using Σ.GenBind with its random tape

containing uniformly random coins. For all j ∈ [tlen], vk∗uj is binding on the value H.Hash(hk∗j , α
∗
j )

and is computed using Σ.GenBind with its random tape containing uniformly random coins.

To prove D ≈ D∗, consider the following sequence of hybrid distributions.

Distribution D0: This is same as D except that for all j ∈ {0, . . . , tlen}, the normal hash
key hkj is computed using H.GenBind instead of H.Gen as follows. Ifj ̸= tlen, (hkj , hk

∗
j ) ←

H.GenBind(1λ, 12ℓvk(λ), αj). Ifj = tlen, (hktlen, hk
∗
tlen)← H.GenBind(1λ, 1tlen+len, αj).

Distribution D1: This is same as D0 except that for all j ∈ [tlen], vkuj are computed using

Σ.Gen(1λ, 1ℓh(λ)) with its random tape containing uniformly random coins instead of Σ.Gen(1λ, 1ℓh(λ);
PPRF.Eval(K, uj)).

Distribution D2,i for all i ∈ {tlen+ 1, . . . , 0}: The distribution is as follows.
(vku0 , σ̃0, hk0), . . . , (vkui−2

, σ̃i−2, hki−2),

(vkui−1
, σ̃i−1, hki−1), (vk

∗
ui , σ

∗
i , hk

∗
i ), . . . , (vk

∗
utlen

, σ∗
tlen, hk

∗
tlen),

{vksibj}j∈[tlen], t
∗, x∗,K∗


It differs from distribution D1 in the terms highlighted in blue. These differing values are computed
in the following sequence:
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• Let α∗
tlen = t∗||x∗.

• Compute (hktlen, hk
∗
tlen)← H.GenBind(1λ, 1len+tlen, α∗

tlen).

• Compute (vk∗utlen , σ
∗
tlen) = Σ.GenBind(1λ, 1ℓh(λ),H.Hash(hk∗tlen, α

∗
tlen)).

• For j = tlen− 1, . . . , i in decreasing order:

– Let α∗
j =

{
vk∗uj+1

||vksibj+1
if jth-bit of t is 0

vksibj+1
||vk∗uj+1

if jth-bit of t is 1
.

– Compute (hkj , hk
∗
j )← H.GenBind(1λ, 12ℓvk(λ), α∗

j ).

– Compute (vk∗uj , σ
∗
j ) = Σ.GenBind(1λ, 1ℓh(λ),H.Hash(hk∗j , α

∗
j )).

• Compute σ̃i−1 = Σ.Sign(skui−1 ,H.Hash(hki−1, α
∗
i−1)).

To complete the proof, we will argue that

D ≡ D0 ≈ D1 ≡ D2,tlen+1 ≈ D2,tlen ≈ . . . ≈ D2,0 ≡ D∗.

D1 ≡ D2,tlen+1: Observe that the distribution in D2,tlen+1 is{
(vku0 , σ̃0, hk0), . . . , (vkutlen−1

, σ̃tlen−1, hktlen−1),

(vkutlen , σ̃tlen, hktlen), {vksibj}j∈[tlen], t
∗, x∗,K∗

}
.

It differs fromD1 in only one term σ̃tlen. InD2,tlen+1, the signature is σ̃tlen = Σ.Sign(skutlen ,H.Hash(hktlen, α
∗
tlen)).

Whereas, in D1, the signature is σ̃tlen = Σ.Sign(skutlen ,H.Hash(hktlen, αtlen)). As α∗
tlen = αtlen =

t∗||x∗, therefore, we get that σ̃tlen in the two distributions are identically distributed. Hence, D1

and D2,tlen+1 are identically distributed.

D2,0 ≡ D∗: Observe that the distribution in D2,0 is{
(vk∗u0 , σ

∗
0, hk

∗
0), . . . , (vk

∗
utlen

, σ∗
tlen, hk

∗
tlen), {vksibj}j∈[tlen], t

∗, x∗,K∗
}
.

This description is exactly same as that of D∗. It follows then that D2,0 and D∗ are identically
distributed.

In Lemma C.6, we show that D ≡ D0. In Lemma C.7, we show that D0 ≈ D1. In Lemma C.8,
we show that D2,i+1 ≈ D2,i for all i ∈ {tlen, . . . , 0}. This completes the proof.

Lemma C.6. Suppose that H is a SPB hash function that satisfies identical distribution of normal
hash keys, then, D ≡ D0.

Proof. The equivalence can be proven via a sequence of tlen + 1 hybrid distributions D0,i for all
i ∈ {0, . . . , tlen}. In D0,i, for all j ≤ i, hkj will be computed as normal hash keys output by
H.GenBind(1λ, 12ℓvk(λ), αj) (or H.GenBind(1λ, 1tlen+len, αtlen) in case j = tlen) and all other hash
keys will be computed as normal hash keys output by H.Gen(1λ, 12ℓvk(λ)) (or H.Gen(1λ, 1tlen+len)
in case j = tlen). Then, we can show that D ≡ D0,0 ≡ D0,1 ≡ . . . ≡ D0,tlen. Notice that here every
adjacent distribution differs only in how one hash key is chosen and the equivalence can then be
argued by the identical distribution of normal hash keys of the SPB hash function H. Lastly, D0,tlen

is same as D0. This completes the proof.
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Lemma C.7. Suppose that PPRF is a secure puncturable PRF, then, D0 ≈ D1.

Proof. Suppose that the path (excluding root node) from the root to t∗ is u1, . . . , utlen. Then, observe
that both the distributions D0 and D1 contain the punctured PRF key K∗ punctured at strings
u1, . . . , utlen. For all i ∈ [tlen], vkui are computed using Σ.Gen with its random tape differing in D0

and D1 as follows:

• In D0, the random tape is PPRF.Eval(K, ui).

• In D1, the random tape contains uniformly random coins.

From security of puncturable PRFs, we know that the PRF evaluations on punctured points look
indistinguishable from random. Therfore, if there exists a p.p.t. adversary A that can distinguish
between D0 and D1 with non-neglegible advantage, then, a straightforward reduction B can be
constructed that can break the PPRF security.

Lemma C.8. Suppose that Σ is a SPB signature scheme that satisfies computational indistinguisha-
bility of normal and binding verification keys (See Appendix B.4). Suppose that H is a SPB hash
function that satisfies computational indistinguishability of normal and binding hash keys. Then,
D2,i+1 ≈ D2,i for all i ∈ {tlen, . . . , 0}.

Proof. The difference between D2,i+1 and D2,i is as follows:

• D2,i+1 contains (vkui , σ̃i, hki) where vkui , hki are non-binding, σ̃i is signature on H.Hash(hki, α
∗
i ).

But D2,i contains (vk
∗
ui , σ

∗
i , hk

∗
i ), where hk∗i is binding on the value α∗

i , vk
∗
ui is binding on the

value H.Hash(hk∗i , α
∗
i ) and σ∗

i is a signature on H.Hash(hk∗i , α
∗
i ).

• D2,i+1 contains signature σ̃i−1 on H.Hash(hki−1, αi−1) and D2,i contains signature σ̃i−1 on
H.Hash(hki, α

∗
i−1).

Essentially the two distributions are different in the ith SPB hash key, the ith SPB verification
key and the signatures associated with them. To prove computational indistinguishability, we
introduce an intermediate hybrid D′

2,i as follows.

Distribution D′
2,i for all i ∈ {0, . . . , tlen}: This is same as distribution D2,i+1 except that the

normal hash key hki is replaced with the binding hash key hk∗i . As a consequence, σ̃i is now a
signature on H.Hash(hk∗i , α

∗
i ) instead of H.Hash(hki, α

∗
i ).

In Claim C.9, we show that D2,i+1 ≈ D′
2,i. In Claim C.10, we show that D′

2,i ≈ D2,i. This
completes the proof.

Claim C.9. Suppose that H is a SPB hash function that satisfies computational indistinguishability
of normal and binding hash keys. Then, for all i ∈ {0, . . . , tlen}, D2,i+1 ≈ D′

2,i.

Proof. As noted in the description of D′
2,i, it essentially differs from D2,i+1 in the ith SPB hash key

and the signature associated with it.
Suppose that there exists a p.p.t. adversary A that can distinguish between D2,i+1 and D′

2,i

with non-neglegible advantage, then, we show a reduction B that can break the computational
indistinguishability of normal and binding hash keys of the SPB hash function H as follows.
B receives (t∗, x∗) as inputs fromA. B computes the punctured PRF keyK∗ as inBindingSetup

algorithm. Then, B computes the following:

• For all j ∈ [tlen], compute (sksibj , vksibj )← Σ.Gen(1λ, 1ℓh(λ)).
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• For all j = tlen, . . . , i+1 in decreasing order, compute: (hkj , hk
∗
j )← H.GenBind(1λ, 12ℓvk(λ), α∗

j )

(or (hktlen, hk
∗
tlen)← H.GenBind(1λ, 1tlen+len, α∗

j ) if j = tlen) , and (vk∗uj , σ
∗
j )← Σ.GenBind(1λ,

1ℓh(λ),H.Hash(hk∗j , α
∗
j )), where α∗

j is as defined in step 4 of BindingSetup algorithm.

• For j = i, B sends a challenge (12ℓvk(λ), α∗
i ) (or (1tlen+len, α∗

i ) if i = tlen) to the SPB hash
function challenger C, where α∗

i is as defined in step 4 ofBindingSetup algorithm. C computes
(hki, hk

∗
i )← H.GenBind(1λ, 12ℓvk(λ), α∗

i ) (or (hki, hk
∗
i )← H.GenBind(1λ, 1tlen+len, α∗

i ) if i =

tlen). C flips a uniformly random bit b
$←{0, 1}. If b = 0, C sets hk′ = hki. If b = 1,

C sets hk′ = hk∗i . C sends hk′ to B. B computes (skui , vkui) ← Σ.Gen(1λ, 1ℓh(λ)) and
σ̃i = Σ.Sign(skui ,H.Hash(hk′, α∗

i )).

• For all j = i− 1, . . . , 0 in decreasing order, compute: hkj ← H.Gen(1λ, 12ℓvk(λ)), (skuj , vkuj )←
Σ.Gen(1λ, 1ℓh(λ)) and σ̃j = Σ.Sign(skuj ,H.Hash(hkj , αj)). Here, αj is as defined in step 4 of
Sign algorithm.

Finally, B sends the following to A. (vku0 , σ̃0, hk0), . . . , (vkui−2
, σ̃i−2, hki−2),

(vkui−1
, σ̃i−1, hki−1), (vkui , σ̃i, hk

′), (vk∗ui+1
, σ∗

i+1, hk
∗
i+1), . . . , (vk

∗
utlen

, σ∗
tlen, hk

∗
tlen),

{vksibj}j∈[tlen], t
∗, x∗,K∗


A outputs a guess b′ ∈ {0, 1} to B and B forwards b′ to its challenger C.

Observe that when C chooses b = 0, then, B perfectly simulates D2,i+1 to A. And when C
chooses b = 1, then, B perfectly simulates D′

2,i to A. Therefore, if A distinguish between its two
view with non-neglegible advantage, then, B can distinguish between its two views in its game with
C with the same non-neglegible advantage and thus break the computational indistinguishability of
normal and binding hash keys of the SPB hash function H.

Claim C.10. Suppose that Σ is a SPB signature scheme that satisfies computational indistinguisha-
bility of normal and binding verification keys (See Appendix B.4). Then, for all i ∈ {0, . . . , tlen},
D′

2,i ≈ D2,i.

Proof. The difference between distributions D′
2,i and D2,i is as follows.

• D′
2,i contains (vkui , σ̂i, hk

∗
i ), but D2,i contains (vk

∗
ui , σ

∗
i , hk

∗
i ). In both, hk∗i is binding on the

value α∗
i . In D′

2,i, vkui is non-binding, σ̂i is signature on H.Hash(hk∗i , α
∗
i ) computed using

Σ.Sign. In D2,i, vk∗ui is binding on the value H.Hash(hk∗i , α
∗
i ) and σ∗

i is a signature on
H.Hash(hk∗i , α

∗
i ) computed using Σ.GenBind algorithm.

• D2,i+1 contains signature σi−1 on H.Hash(hki−1, αi−1) and D2,i contains signature σ̂i−1 on
H.Hash(hki, α

∗
i−1). Recall here that αi−1 contains vkui whereas α

∗
i−1 contains vk∗ui .

Essentially the two distributions are different in the ith SPB verification key and the signatures
associated with it.

Suppose that there exists a p.p.t. adversary A that can distinguish between D′
2,i and D2,i

with non-neglegible advantage, then, we show a reduction B that can break the computational
indistinguishability of normal and binding verification keys of the SPB signature scheme Σ as follows.
B receives (t∗, x∗) as inputs fromA. B computes the punctured PRF keyK∗ as inBindingSetup

algorithm. Then, B computes the following where ℓj = 2ℓvk(λ) if j ̸= tlen else ℓj = tlen+ len.
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• For all j ∈ [tlen], compute (sksibj , vksibj )← Σ.Gen(1λ, 1ℓh(λ)).

• For all j = tlen, . . . , i+ 1 in decreasing order, compute: (hkj , hk
∗
j )← H.GenBind(1λ, 1ℓj , α∗

j )

and compute (vk∗uj , σ
∗
j )← Σ.GenBind(1λ, 1ℓh(λ),H.Hash(hk∗j , α

∗
j )), where α∗

j is as defined in
step 4 of BindingSetup algorithm.

• For j = i, B computes (hki, hk
∗
i ) ← H.GenBind(1λ, 1ℓi , α∗

i ), where α∗
i is as defined in

step 4 of BindingSetup algorithm. B sends a challenge (1ℓh(λ),H.Hash(hk∗i , α
∗
i )) to

the SPB signature challenger C. C flips a uniformly random bit b
$←{0, 1}. If b = 0, C

computes (sk′, vk′) ← Σ.Gen(1λ, 1ℓh(λ)), σ′ = Σ.Sign(pp′, sk′,H.Hash(hk∗i , α
∗
i )). If b = 1, C

computes (vk′, σ′)← Σ.GenBind(1λ, 1ℓh(λ),H.Hash(hk∗i , α
∗
i )). C sends (vk′, σ′) to B. B sets

αi−1 = vk′||vksibi−1
if the i− 1th-bit of t∗ is 0, else B sets αi−1 = vksibi−1

||vk′.

• For all j = i− 1, . . . , 0 in decreasing order, compute: hkj ← H.Gen(1λ, 12ℓvk(λ)), (skuj , vkuj )←
Σ.Gen(1λ, 1ℓh(λ)) and σj = Σ.Sign(skuj ,H.Hash(hkj , αj)). Here, αj is as defined in step 4 of
Sign algorithm, except that it is as defined in the previous step when j = i− 1.

Finally, B sends the following to A. (vku0 , σ0, hk0), . . . , (vkui−2
, σi−2, hki−2),

(vkui−1
, σi−1, hki−1), (vk

′, σ′, hk∗i ), (vk
∗
ui+1

, σ∗
i+1, hk

∗
i+1), . . . , (vk

∗
utlen

, σ∗
tlen, hk

∗
tlen),

{vksibj}j∈[tlen], t
∗, x∗,K∗


A outputs a guess b′ ∈ {0, 1} to B and B forwards b′ to its challenger C.

Observe that when C chooses b = 0, then, B perfectly simulates D′
2,i to A. And when C chooses

b = 1, then, B perfectly simulates D2,i to A. Therefore, if A distinguish between its two view with
non-neglegible advantage, then, B can distinguish between its two views in its game with C with the
same non-neglegible advantage and thus break the computational indistinguishability of normal and
binding verification keys of the SPB signatures scheme Σ.

Lemma C.11. Suppose that Σ is a SPB signature scheme satisfying statistical binding. Suppose
that H is a SPB hash function satisfying statistical binding. Then, the construction in Appendix C.1
satisfies statistical unforgeability at (t∗, x∗) (See Definition 5.1).

Proof. Let (sk∗, vk∗, pp∗) ← BindingSetup(1λ, tlen, len, t∗, x∗) and σ∗ = PSign(pp∗, sk∗, t∗, x∗).
Then, vk∗ = vk∗u0 , pp

∗ = {hk∗j}j∈{0,...,tlen}. Let the nodes on the path (excluding root node) from
root to t∗ be u1, . . . , utlen and let their siblings be sib1, . . . , sibtlen. Then, σ

∗ is as follows.

σ∗ = ((σ∗
0, vk

∗
u1 , vksib1), . . . , (σ

∗
tlen−1, vk

∗
utlen

, vksibtlen), σ
∗
tlen).

We need to prove two things and we do them one after the other below.

(i) for t = t∗, x = x∗, there does not exist σ′ ̸= σ∗ such that Vf(pp∗, vk∗, t∗, x∗, σ′) = 1: We

prove by contradiction. Suppose such a signature σ′ ̸= σ∗ exists. Let σ′ = ((σ′
0, vk

′
u1 , vk

′
sib1), . . . , (σ

′
tlen−1,

vk′utlen , vk
′
sibtlen

), σ′
tlen). For all j ∈ {0, . . . , tlen− 1}, define α′

j with respect to vk′uj , vk
′
sibj

the same way
as α∗

j is defined with respect to vk∗uj , vksibj in step 4 of BindingSetup algorithm.
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This means,

Σ.Vf(vk∗u0 ,H.Hash(hk∗0, α
′
0), σ

′
0) = 1,

Σ.Vf(vk′u1 ,H.Hash(hk∗1, α
′
1), σ

′
1) = 1,

...

Σ.Vf(vk′utlen−1
,H.Hash(hk∗tlen−1, α

′
tlen−1), σ

′
tlen−1) = 1,

Σ.Vf(vk′utlen ,H.Hash(hk∗tlen, α
∗
tlen), σ

′
tlen) = 1.

By the statistical binding of SPB signatures, it follows that the binding key vk∗u0 only accepts a
unique signature for H.Hash(hk∗0, α

∗
0). This implies that with overwhelming probability σ′

0 = σ∗
0

and H.Hash(hk∗0, α
′
0) = H.Hash(hk∗0, α

∗
0). By the statistical binding of SPB hash key hk∗0 at α∗

0, this
also implies with overwhelming probability that α′

0 = α∗
0. Therefore, vk

′
u1 = vk∗u1 and vk′sib1 = vksib1

The second verification check is then equivalent to

Σ.Vf(vk∗u1 ,H.Hash(hk∗1, α
′
1), σ

′
1) = 1.

By the same argument as before, we get that with overwhelming probability σ′
1 = σ∗

1, vk
′
u2 = vk∗u2 .

vk′sib2 = vksib2 . By induction, then, we get that with overwhelming probability, σ′
i−1 = σ∗

i−1, vk
′
ui =

vk∗ui , vk
′
sibi

= vksibi for all i = 3, . . . , tlen.
The last verification check is then equivalent to

Σ.Vf(vk∗utlen ,H.Hash(hk∗tlen, α
∗
tlen), σ

′
tlen) = 1.

By the statistical binding of SPB signatures, it follows that the binding key vk∗utlen accepts a
unique signature for H.Hash(hk∗tlen, α

∗
tlen). This implies σ′

tlen = σ∗
tlen.

Combining all the above observations, it follows that σ′ = σ∗. This is contradictory, and hence,
completes the proof of this part.

(ii) for t = t∗, x ̸= x∗, there does not exist σ′ such that Vf(pp∗, vk∗, t∗, x, σ′) = 1: We will prove
this by contradiction. Suppose such a signature σ′ exists for some x ≠ x∗. Let the nodes on the path
(excluding root node) from root to t∗ be u1, . . . , utlen and let their siblings be sib1, . . . , sibtlen. Then,
we can parse the signature as σ′ = ((σ′

0, vk
′
u1 , vk

′
sib1), . . . , (σ

′
tlen−1, vk

′
utlen

, vk′sibtlen), σ
′
tlen). Suppose that

σ∗ = PSign(pp∗, sk∗, t∗, x∗), where σ∗ = ((σ∗
0, vk

∗
u1 , vksib1), . . . , (σ

∗
tlen−1, vk

∗
utlen

, vksibtlen), σ
∗
tlen). Then,

similar to the previous part, one can argue that it must be the case that with overwhelming
probability σ′

i−1 = σ∗
i−1, vk

′
ui = vk∗ui , vk

′
sibi

= vksibi for all i = 1, 2, 3, . . . , tlen. Then, if Vf algo-
rithm accepts σ′, it must be the case that vk∗utlen accepts σ′

tlen for the message H.Hash(hk∗, t∗||x)
where x ̸= x∗. By the statistical binding of SPB signature, we know that vk∗utlen can only
accept a signature for the message H.Hash(hk∗, t∗||x∗). Therfore, it must be the case that
H.Hash(hk∗tlen, t

∗||x) = H.Hash(hk∗tlen, t
∗||x∗). By the statistical binding of SPB hash key hk∗tlen at

t∗||x∗, this implies with overwhelming probability that x = x∗. This is contradictory, and hence,
completes the proof of this part.

D Upgrading Security Under Static Corruption

In this section, we prove an upgrade theorem which shows that to prove the static security of our
scheme, it suffices to prove a weaker notion of security that imposes additional constraints on the
adversary.
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D.1 Definition: Selective Single-Challenge Security w.r.t. a Single Inversion

We now define a weaker security notion called selective single-challenge seucrity w.r.t. inversion.
In the security game, the adversary A must be subject to a set of restrictions (besides having to
corrupt all players upfront):

• A must submit a pair of permutations π(0) and π(1) that differ by only a single inversion, i.e.,
π(1) can be obtained from π(0) by swapping a pair of senders’ destinations — henceforth we use
s and s′ to denote this pair of senders; and

• there is only a single challenge time step, and A must commit to the challenge time step and
challenge plaintexts for honest senders upfront.

Introducing a simulated setup algorithm. To make such a definition possible, we must first
impose an additional requirement on the syntax. Specifically, we introduce a simulated setup
algorithm Setup∗ that is never used in the real world, but needed for the security definition.
Specifically, the simulated setup algorithm Setup∗(1λ, len, n, π(0), π(1)) takes in both permutations
π(0), π(1) that differ by one inversion pertaining to a pair of senders s and s′, and it outputs

{eku}u∈[n]\{s,s′}, (ek
(0)
s , ek

(0)
s′ ), (ek

(1)
s , ek

(1)
s′ ), {rku}u∈[n], and tk. Importantly, observe that a single

set of sender keys {eku}u∈[n]\{s,s′}, for [n]\{s, s′} and the routing token tk must be simultaneously

compatible with two different sets of sender keys (ek
(0)
s , ek

(0)
s′ ), (ek

(1)
s , ek

(1)
s′ ), for the swapped senders

s and s′, corresponding to the two worlds b = 0 and b = 1, respectively. More precisely, we want the
following property:

Marginal distribution of simulated setup statistically close as the real setup:

- for either b ∈ {0, 1}, the terms
(
{eku}u∈[n]\{s,s′}, (ek

(b)
s , ek

(b)
s′ ), {rku}u∈[n], tk

)
output by Setup∗

has negligibly small statistical distance from the output of the real Setup(1λ, len, n, π(b)).

With this additional simulated setup algorithm, we are ready to define selective single-challenge
security for a single inversion.

Experiment NIARStatic-SelSingleCh-Invb,A(1λ).

• n, len,KS ,KR, π
(0), π(1), t∗, {x(0)u,t∗ , x

(1)
u,t∗}u∈HS

← A(1λ);

• ({eku}u∈[n]\{s,s′}, ek
(0)
s , ek

(0)
s′ , ek

(1)
s , ek

(1)
s′ , {rku}u∈[n], tk)← Setup∗(1λ, len, n, π(0), π(1));

• ⊥ ← A(tk, {eku}u∈KS
, {rku}u∈KR

);

• For t = 1, 2, . . .:

– if t ̸= t∗: ({xu,t}u∈HS
, δt)← A(⊥), and for u ∈ {s, s′}, let CTu,t := Enc(ek

(δt)
u , xu,t, t); for all

other u ∈ HS , let CTu,t := Enc(eku, xu,t, t);

– else if t = t∗: for u ∈ {s, s′}, let CTu,t∗ := Enc(ek
(b)
u , x

(b)
u,t∗ , t

∗); for all other u ∈ HS , let

CTu,t∗ := Enc(eku, x
(b)
u,t∗ , t

∗);

– ⊥ ← A({CTu,t}u∈HS
);
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The adversary is said to be admissible, iff with probability 1, Leak∗(π(0),KS ,KR, {x(0)u,t∗}u∈HS
) =

Leak∗(π(1),KS ,KR, {x(1)u,t∗}u∈HS
) where where the function Leak∗ (π,KS ,KR), {xu,t∗}u∈HS

) contains
the destination of each corrupt sender and the contents of the messages from honest senders to
corrupt receivers, as defined below:

Leak∗(π,KS ,KR, {xu,t∗}u∈HS
) := ({(u, π(u))}u∈KS

, {(u, xπ−1(u),t∗)}u∈KR,π−1(u)∈HS
)

Intuitively, the admissibility rule requires that the corrupt senders have the same destinations in
the two worlds, and that corrupt receivers receive the same messages from honest senders in the
two worlds.

Definition D.1 (Selective single-challenge security w.r.t. inversion under static corruption). We
say that a NIAR scheme (augmented with a Setup∗ algorithm) satisfies selective security w.r.t.
inversion under static corruption, iff for any non-uniform p.p.t. admissible adversary A which, with
probability 1, submits two permutations π0 and π1 that differ by a single inverstion, A’s views in
NIARStatic-SelSingleCh-Inv0,A(1λ) and NIARStatic-SelSingleCh-Inv1,A(1λ) are computationally indis-
tinguishable.

D.2 Upgrade Theorem for Static Corruption

In this section, we prove an upgrade theorem for the static corruption setting: we start with a
NIAR scheme that is secure when the adversary is subject to the single selective-challenge and
single inversion restrictions, and show that the same scheme also satisfies security without the single
selective-challenge and single inversion restrictions. It turns out that we only need to prove the
upgrade theorem for the special case when the adversary always corrupts all receivers with probability
1. This is because later in Appendix F, we show how to compile a NIAR scheme secure under
static corruption as long as the adversary always corrupt all receivers, to a NIAR scheme that is
fully secure even under adaptive corruptions, and without the restriction that all receivers must be
corrupt.

All-receiving-corrupting adversary. Henceforth, if an adversary corrupts all receivers with
probability 1, we say that it is an “all-receiver-corrupting adversary”. Moreover, if corruption is
static, we also refer to such an adversary as a “static, all-receiver-corrupting adversary”.

Theorem D.2 (Upgrade theorem for static corruption: removing the selective single challenge
and single inversion restrictions). Given a NIAR scheme which works for single-bit messages, and
moreover satisfies selective security w.r.t. inversion (i.e., Definition D.1), under a static, all-receiver-
corrupting adversary, then it also satisfies full static corruption security (Definition A.1) subject to
an all-receiver-corrupting adversary.

D.3 Proof of the Upgrade Theorem

We prove Theorem D.2 in the remainder of this section.

D.3.1 Removing the Selective Restriction

We define an adaptive single-challenge notion also w.r.t. inversion, which removes the restriction
that the adversary A must commit to the challenge t∗ and challenge plaintexts for honest users
upfront.
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Definition D.3 (Adaptive single-challenge security w.r.t. inversion under static corruption).
We say that a NIAR scheme (augmented with a Setup∗ algorithm) satisfies adaptive single-
challenge security w.r.t. inversion under static corruption, iff for any non-uniform p.p.t. admis-
sible adversary A, its views in the following experiments NIARStatic-AdSingleCh-Inv0,A(1λ) and
NIARStatic-AdSingleCh-Inv1,A(1λ) are computationally indistinguishable.

Experiment NIARStatic-AdSingleCh-Invb,A(1λ).

• n, len,KS ,KR, π
(0), π(1) ← A(1λ);

• ({eku}u∈[n]\{s,s′}, ek
(0)
s , ek

(0)
s′ , ek

(1)
s , ek

(1)
s′ , {rku}u∈[n], tk)← Setup∗(1λ, len, n, π(0), π(1));

• ⊥ ← A(tk, {eku}u∈KS
, {rku}u∈KR

);

• For t = 1, 2, . . .:

– ({x(0)u,t}u∈HS
, {x(1)u,t}u∈HS

, δt)← A(⊥) where δt ∈ {0, 1, “challenge”};

– if δt ∈ {0, 1}, then for u ∈ HS , let CTu,t := Enc(ek
(δt)
u , xu,t, t) where ek

(δt)
u := eku if u /∈ {s, s′};

– else if δt = “challenge”, then for u ∈ HS , let CTu,t := Enc(ek
(b)
u , x

(b)
u,t, t) where ek

(b)
u := eku if

u /∈ {s, s′};
– ⊥ ← A({CTu,t}u∈HS

);

The adversary A is said to be admissible iff with probability 1, the following hold:

• There is a unique time step henceforth denoted t∗ in which A sets δt to be “challenge”; and

• Leak∗(π(0),KS ,KR, {x(0)u,t∗}u∈HS
) = Leak∗(π(1),KS ,KR, {x(1)u,t∗}u∈HS

).

The lemma below shows that we can remove the selective single-challenge restriction for free and
upgrade the security to adaptive single-challenge, under a single-inversion, all-receiver-corrupting,
static-corruption adversary. The lemma considers a NIAR scheme where each sender’s plaintext
message in every time step is a single bit, i.e., len = 1. This assumption is without loss of generality,
since we can always parallel-compose multiple NIAR schemes for len = 1 to get a NIAR scheme for
len > 1. We need the len = 1 assumption for the proof to work because we want to make sure the
reduction’s guess is correct with 1/poly(λ) probability — see the proof for more details.

Lemma D.4 (Removing the selective restriction). Given any NIAR scheme which works for
single-bit messages, and moreover satisfies selective single-challenge security w.r.t. a single inversion
(Definition D.1) under a static, all-receiver-corrupting adversary, then it is also adaptive single-
challenge secure w.r.t. a single inversion (Definition D.3) under a static, all-receiver-corrupting
adversary.

Proof. We consider a reduction B that interacts with an adaptive single-challenge adversary A and
leverages it to break selective single-challenge security, w.r.t. inversion in both cases.

• At the start, A submits to B the terms n, len, the set of corrupt senders KS , and two permutations
π(0) and π(1) that differ by a single inversion (recall also that A always corrupts all receivers).
Let s, s′ be the pair of senders whose destinations are swapped. By the admissibility rule on A,
s and s′ must be honest.

• Let T be the maximum number of queries made by A. B guesses at random t∗
$←[T ], guesses the

plaintext messages x
(0)
s,t∗ , x

(0)
s′,t∗ , and lets x

(1)
s,t∗ = x

(0)
s′,t∗ , x

(1)
s′,t∗ = x

(0)
s,t∗ .
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• With its own challenger, B corrupts all receivers, and all senders except s and s′. It submits the

same permutations π(0) and π(1), and the guessed t∗, and the guessed plaintext messages x
(0)
s,t∗ ,

x
(0)
s′,t∗ , x

(1)
s,t∗ , x

(1)
s′,t∗ .

• As a result, B obtains {eku}u∈[n]\{s,s′}, {rku}u∈[n], and tk from its own challenger. B now passes
{eku}u∈KS

, {rku}u∈[n], and tk to A.

• In the following, if A ever submits a challenge query during some t ̸= t∗, or it does not submit a
challenge query during t∗, B aborts.

• During every time step t ̸= t∗, whenever A submits {x(0)u,t}u∈HS
, {x(1)u,t}u∈HS

, and δt ∈ {0, 1}
(assuming B has not aborted), B submits {x(δt)u,t }u∈{s,s′} and δt to its own challenger, and it gets
back the encryptions CTs,t and CTs′,t. For any u ∈ HS\{s, s′}, B simply uses eku to encrypt

x
(δt)
u,t and obtains CTu,t. B returns to A the resulting {CTu,t}u∈HS

.

• For t = t∗, assuming the reduction B has not aborted, A must have specified t∗ to be the

challenge time step. Now, check if the challenge plaintexts {x(0)u,t∗ , x
(1)
u,t∗}u∈HS

A has submitted

are consistent with the reduction B’s guesses x
(0)
s,t∗ , x

(0)
s′,t∗ , x

(1)
s,t∗ , x

(1)
s′,t∗ . If not, the reduction B

simply aborts.

Now, B receives from its challenger CTs,t∗ and CTs′,t∗ . For any u ∈ HS\{s, s′}, by the admissibility

rule on A, it must be that x
(0)
u,t∗ = x

(1)
u,t∗ . B now uses the corresponding eku to compute an

encryption of x
(0)
u,t∗ and let the result be CTu,t∗ . B now returns {CTu,t∗}u∈HS

to A.

• At the end, if B has not aborted, it outputs whatever A outputs.

Observe that the Setup∗ algorithm executed by B’s challenger does not depend on the challenge
time step t∗ or the challenge plaintexts. Therefore, if B’s challenger is in world b = 0, and if the
reduction did not abort, then A’s view is identically distributed as in NIARStatic-AdSingleCh0,A

(subject to single inversion). Otherwise, if B’s challenger is in world b = 1, and if the reduction
did not abort, then A’s view is identically distributed as in NIARStatic-AdSingleCh1,A (subject to
single inversion). The lemma follows by observing as long as the message length is only one bit, the
probability that the reduction B guesses correctly is 1/poly(λ).

D.3.2 Removing the Single Challenge Restriction

We now prove that we can further remove the single challenge restriction.

Lemma D.5 (Removing the single challenge restriction). Given any NIAR scheme that satisfies
adaptive single-challenge security w.r.t. inversion (Definition D.3) subject to a static, all-receiver
corrupting adversary, the same scheme also satisfies Definition A.1 subject to a static, single-
inversion, all-receiver-corrupting adversary.

Proof. Let T be the maximum number of queries made by the adversary. We consider the following
sequence of hybrids indexed by i ∈ {0, 1, . . . , T}, and recall that the permutations π(0), π(1) submitted
by the adversary A must differ by only one inversion where the swapped pair of senders is denoted
s and s′ below.

Hybrid experiment Hybi:

• n, len,KS ,KR, π
(0), π(1) ← A(1λ);
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• ({eku}u∈[n]\{s,s′}, ek
(0)
s , ek

(0)
s′ , ek

(1)
s , ek

(1)
s′ , {rku}u∈[n], tk)← Setup∗(1λ, len, n, π(0), π(1));

• ⊥ ← A(tk, {eku}u∈KS
, {rku}u∈KR

);

• For t = 1, 2, . . .:

– ({x(0)u,t}u∈HS
, {x(1)u,t}u∈HS

)← A(⊥);

– if t > i: then for u ∈ HS , let CTu,t := Enc(ek
(0)
u , xu,t, t) where ek

(0)
u := eku if u /∈ {s, s′};

– else if t ≤ i, then for u ∈ HS , let CTu,t := Enc(ek
(1)
u , x

(1)
u,t , t) where ek

(1)
u := eku if u /∈ {s, s′};

– ⊥ ← A({CTu,t}u∈HS
);

A is said to be admissible iff it is subject to the same admissibility rules as Definition A.1;
moreover, we also assume thatA respects the single-inversion, and all-receiver-corrupting6 constraints.
Since the marginal distribution of Setup∗ is statistical close to the real-world Setup algorithm, it
holds that A’s view in Hyb0 is statistically close to NIARStatic0,A, and its view in HybT is statistically
close to NIARStatic1,A. It suffices to prove that every adjacent pair of hybrids are computationally
indistinguishable to the adversary. This can be shown through a straightforward reduction to the
adaptive single-challenge security w.r.t. inversion (Definition D.3).

D.3.3 Removing the Single Inversion Restriction

We next show how to remove the single inversion restriction on the adversary.

Lemma D.6 (Removing the single inversion restriction (static corruption)). Given a NIAR scheme
that satisfies Definition A.1 subject to a static, single-inversion, all-receiver-corrupting adversary,
the same scheme also satisfies Definition A.1 subject to a static, all-receiver-corrupting adversary.

Proof. Given any two permutations π(0) and π(1) submitted by A, let C(π(0), π(1)) be the set
of senders that have different destinations in π(0) and π(1) — by the admissibility rule on A, it
must be that C(π(0), π(1)) are all honest senders. We define a sequence of permutations denoted
π∗
0, . . . , π

∗
n where π∗

0 = π(0), and for any 0 < i ≤ n, π∗
i is almost the same as π∗

i−1, except that

if i ≤ |C(π(0), π(1))|, then we additionally swap the destinations of the i-th honest sender in
C(π(0), π(1)) denoted u∗i and whoever is sending to π(1)(u∗i ) in π∗

i−1 — by construction, the sender

u∗i is swapping destinations with another sender that must lie within the the set C(π(0), π(1)). Else if
i > |C(π(0), π(1))|, then, π∗

i = π∗
i−1. By construction, in π∗

i , the first i honest senders in C(π(0), π(1))

have their correct destinations as in π(1), and thus π∗
n = π(1).

We now consider a sequence of hybrid experiments denoted Hybi where i ∈ {0, 1, . . . , n}, in which
a challenger interacts with an adversary A that has the same interface as a NIARStaticb,A adversary,
and moreover, it always corrupts all receivers upfront. Namely, A submits n, len,KS ,KR, π

(0), π(1)

upfront where KR is guaranteed to be [n], and then in every time step t, it submits {x(0)u,t , x
(1)
u,t}u∈HS

.
In Hybi, the challenger computes the responses to A as follows:

• It calls the Setup algorithm on the input len, n and the permutation π∗
i (which is uniquely

determined given π(0) and π(1) submitted by A),

• During each time step t, upon receiving {x(0)u,t , x
(1)
u,t}u∈HS

, do the following: for each u ∈ HS , let

x∗u,t = x
(1)
u′,t where u′ = π(1)−1

(π∗
i (u)); now compute ctu,t = Enc(eku, x

∗
u,t, t).

6The all-receiver-corrupting restriction is not important for this lemma, that is, the lemma and the proof still hold
if we remove every occurrence of “all-receiver-corrupting”.
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By construction, and due to the admissibility rule on A, Hyb0 is the same as NIARStatic0,A, and
Hybn is the same as NIARStatic1,A. It suffices to argue that the adversary’s views in every pair
of adjacent hybrids Hybi and Hybi+1 are computationally indistinguishable. This can be achieved
through a reduction to the static single-inversion security under all-corrupt-receivers.

If π∗
i+1 = π∗

i , then by definition, Hybi and Hybi+1 are identically. Henceforth we focus on the
case when π∗

i+1 and π∗
i differ by exactly one inversion. Consider a reduction B which receives

n, len,KS ,KR, π
(0), π(1) from A upfront where KR is guaranteed to be [n], B submits to its own

challenger n, len,KS ,KR, π
∗
i , π

∗
i+1 and passes the responses to A. In every time step t, B receives

{x(0)u,t , x
(1)
u,t}u∈HS

from A. Now, for each u ∈ HS , let x
∗
u,t = x

(1)
u′,t where u′ = π(1)−1

(π∗
i (u)), and let

y∗u,t = x
(1)
u′,t where u′ = π(1)−1

(π∗
i+1(u)). It submits to its own challenger the challenge plaintexts

{x∗u,t, y∗u,t}u∈HS
, and passes the responses to A. B outputs whatever A outputs.

If B’s challenger is in world b = 0 and encrypts the plaintexts {x∗u,t}u∈HS
, then A’s view is

identically distributed as in Hybi; else B’s challenger is in world b = 1 and encrypts the plaintexts
{y∗u,t}u∈HS

, then A’s view is identically distributed as in Hybi+1.
Finally, by construction, if A respects its admissibility rules, then B respects its admissibility

rules as well. Moreover, as mentioned earlier, B respects the single-inversion constraint. Therefore,
B can translate A’s advantage in distinguishing Hybi and Hybi+1 into its own advantage at breaking
the single-inversion static-corruption security of NIAR (subject to all-corrupting receivers).

D.3.4 Completing the Proof

The proof of Theorem D.2 follows directly by combining Lemmas D.4 to D.6.

E Proof of Selective Single-Challenge Security w.r.t. a Single
Inversion

We now prove indistinguishability w.r.t. inversions against an adversary that additionally satisfies
the selective single-challenge restriction. Formally, we have the following theorem.

Theorem E.1. Suppose that PRF is a secure puncturable PRF, Sig is a secure deterministic SSU
signature scheme, and iO is a secure indistinguishability obfuscation scheme. Then our NIAR
construction in Section 6.1 satisfies selective single-challenge security w.r.t. inversion under static
corruption (Definition D.1) subject to an all-receiver-corrupting adversary.

In order to invoke Definition D.1, we next describe the Setup∗ algorithm. We will show in
Claim E.2 that the Setup∗ algorithm satisfies the requirements that its marginal distribution is
statistically close to the real setup.
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Setup∗(1λ, len, n, π(0), π(1)): on inputs the security parameter 1λ, the individual message length
len, the number of parties n, the permutations π(0) and π(1), does the following:

1. Set tlen = log2(λ).

2. Sampling Routes: Let the two senders that π(0) and π(1) differ on be s and s′. Run the
AssignRoutes∗ procedure (Appendix B.1) on inputs (1λ, n, π(0), π(1)). Abort if it outputs

⊥. Else parse the output as ({rteu}u∈[n]\{s,s′}, {rte
(0)
u , rte

(1)
u }u∈{s,s′}).

3. Sampling Wire Keys: Same as in Setup (Figure 3).

4. Signing Routes: For each sender u ∈ [n] \ {s, s′} do the following:

(a) Parse rteu = (j1, . . . , jL). Sign rteu using route signing keys for each wire along rteu,
that is, for ℓ ∈ [L] compute rsigℓ = Sig.Sign(rpp(ℓ,jℓ), rsk(ℓ,jℓ), 1, rteu). // Same way
as in Setup (Figure 3).

(b) Set rteu = (rteu, rsigu = (rsig1, . . . , rsigL)). // Same way as in Setup (Figure 3).

For each sender u ∈ {s, s′} and for each β ∈ {0, 1}, do the following:

(a) Parse rte
(β)
u = (j1, . . . , jL). Sign rte

(β)
u using route signing keys for each wire along

rte
(β)
u , that is, for ℓ ∈ [L] compute rsig

(β)
ℓ = Sig.Sign(rpp(ℓ,jℓ), rsk(ℓ,jℓ), 1, rte

(β)
u ).

// Same way as in Setup (Figure 3).

(b) Set rte(β)u = (rte
(β)
u , rsigu = (rsig

(β)
1 , . . . , rsig

(β)
L )). // Same way as in Setup (Fig-

ure 3).

5. Setting Routing Token: Same as in Setup (Figure 3).

6. Setting Sender Keys: For each u ∈ [n] \ {s, s′}, set eku = (k(1,j1),mpp(1,j1),

msk(1,j1), rteu). For each u ∈ {s, s′} and β ∈ {0, 1}, set ek
(β)
u = (k(1,j1),mpp(1,j1),

msk(1,j1), rte
(β)
u ).

7. Setting Receiver Keys: For each v ∈ [n], set rkv = k(L,2v−1).

8. Output ({eku}u∈[n]\{s,s′}, {ek
(0)
u , ek

(1)
u }u∈{s,s′}, {rku}u∈[n], tk).

Figure 4: The Setup∗ algorithm for selective single-challenge security w.r.t. inversion under static
corruption as defined in Definition D.1.

Claim E.2. If the routing network satisfies obliviousness as defined in Definition B.1, then the
Setup∗ algorithm in Figure 4 satisfies the requirement that its marginal distribution is statistically
close to the real setup. More formally,

- for either b ∈ {0, 1}, the terms
(
{eku}u∈[n]\{s,s′}, (ek

(b)
s , ek

(b)
s′ ), {rku}u∈[n], tk

)
output by Setup∗(1λ,

len, π(0), π(1)) has negligibly small statistically distance from the output of the real Setup(1λ, len, n, π(b)).

Proof. For either b ∈ {0, 1}, the terms
(
{eku}u∈[n]\{s,s′}, (ek

(b)
s , ek

(b)
s′ ), {rku}u∈[n], tk

)
output by

Setup∗ differs from the output of the real Setup only in the following way: while Setup samples the

55



senders’ routes using AssignRoutes, Setup∗ samples them using AssignRoutes∗ algorithm. Therefore,
for either b ∈ {0, 1}, the indistinguishability of the terms ({eku}u∈[n]\{s,s′}, (eks, eks′), {rku}u∈[n], tk)
output by the real Setup(1λ, len, n, π(b)) and the terms

(
{eku}u∈[n]\{s,s′}, (ek

(b)
s , ek

(b)
s′ ), {rku}u∈[n], tk

)
output by Setup∗ follows from the obliviousness of the routing network (Definition B.1).

E.1 The Hybrids for Theorem E.1

We are now ready to prove Theorem E.1. We do this via the sequence of hybrids below. In this se-

quence, Hyb
(0)
0 implements NIARStatic-SelSingleCh-Inv0,A, and Hyb

(1)
0 implements NIARStatic-SelSingleCh-Inv1,A.

Thus it suffices to prove indistinguishability between each successive pair of hybrids Hyb
(b)
i and

Hyb
(b)
i+1 for each i and b ∈ {0, 1}, and that the final hybrid Hyb

(b)
9 is wholly independent of b.

In the following, we say that a wire is “corrupt” or “honest” if it is on a path which originates
with a corrupt or honest sender respectively, and we say that a wire is an “inversion” wire if it is
on one of the paths that originate with the two honest senders s and s′. We say all wires apart
from corrupt and honest wires to be “filler” wires. Also, we sometimes use the shorthand “wire
(ℓ, j)” to refer to jth wire in the ℓth layer.

E.1.1 Informal Hybrids

In the real world hybrid Hyb
(b)
0 , the adversary’s view contains the sender keys of corrupt senders,

the receiver keys of corrupt receivers, the routing token, non-challenge and challenge ciphertexts for
honest senders. Let’s understand which all of these terms contain information about the challenge
bit b.

• As AssignRoutes∗ assigns a single route to each corrupt sender, hence, the sender keys of
corrupt senders are independent of b. All receiver keys are independent of b.

• The non-challenge ciphertexts are independent of b. It is only the challenge ciphertexts that
are dependent on b as follows. The challenger provides the following challenge ciphertexts to
the adversary.

– for all u ∈ {s, s′}: CTu,t∗ = Enc(ek
(b)
u , x

(b)
u,t∗ , t

∗).

– for all u ∈ HS \ {s, s′}: CTu,t∗ = Enc(eku, x
(b)
u,t∗ , t

∗).

CTu,t∗ contain information about b only for u ∈ {s, s′}: Observe that for senders u ∈
HS \ {s, s′}, π(0)(u) = π(1)(u). This means that the receiver remains the same across the two
worlds for each such sender. And recall that we are proving security against an all-receiver-
corrupting adversary. The admissibility criteria requires then that each corrupt receiver

must receive the same message across the two worlds. This implies that x
(0)
u,t∗ = x

(1)
u,t∗ for all

u ∈ HS \ {s, s′}. Hence, it follows that CTu,t∗ is independent of b for all such honest senders u.
Therefore, the adversary’s view contains information about b in only the challenge ciphertexts
for u ∈ {s, s′}. Removing this information about bit b is non-trivial and requires an intricate
sequence of hybrids as discussed below.

• From the description of the circuit Gate(ℓ,g) in Figure 2, it seems that the routing token
contains no information of b. But, observe that the obfuscated gates treat filler and non-filler
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wires differently. More importantly, notice that its possible that a wire is an inversion wire
when b = 0 and filler wire when b = 1 or vice versa. This is not the case for a corrupt wire
or a honest non-inversion wire as AssignRoutes∗ only assigns a single route for all senders
u /∈ {s, s′}. Hence, one of the goals of our sequence of hybrids is to arrive at the final hybrid
in which the obfuscated gates will treat the inversion and filler wires exactly the same in the
challenge round t∗.

Our sequence of hybrids is as follows.

Hybrid Hyb
(b)
0 : This is the real world experiment NIARStatic-SelSingleCh-Invb,A.

Hybrids Hyb
(b)
1 ,Hyb

(b)
2 ,Hyb

(b)
3 : The foremost change we make is to ensure that for all the corrupt

wires, the authenticated routes that the obfuscated gates obtain are as intended by Setup∗. This
change is accomplished in three steps.

• Hyb
(b)
1 : For each corrupt wire in each layer, puncture the route signing key such that it can

only sign the expected route that passes through that wire. Hyb
(b)
1 is identical to Hyb

(b)
0 as

none of the route signing keys are in the view of the adversary.

• Hyb
(b)
2 : For each corrupt wire in each layer, bind the route signing and verification key such

that the verification key for a corrupt wire only accepts signature for the expected route that
passes through that wire. Indistinguishability follows from indistinguishability of punctured
and binding modes of SSU signatures.

• Hyb
(b)
3 : For each corrupt wire in each layer, hardwire the expected route and expected route

signatures. Further, update the route authentication check to directly compare routes and route
signatures against hardcoded values. Indistinguishability follows from statistical unforgeability
of the SSU signatures at the binding points and iO security.

Hybrids Hyb
(b)
4 : For all filler/inversion wires of layer ℓ = 1, puncture the message signing keys such

that they can sign any message for non-challenge round t ̸= t∗ and only the challenge message for
the challenge round t = t∗. Then, the adversary’s view is identical as before (formal argument can

be found in the transition from Hyb
(b)
3 to Hyb

(b)
4 and Claim E.6).

Hybrids Hyb
(b)
5 : For all filler/inversion wires of layer ℓ = 1, bind the message signing and verification

keys such that the verification key accepts signatures for any message for non-challenge round t ̸= t∗

and only the challenge message for the challenge round t = t∗. Indistinguishability follows from
indistinguishability of punctured and binding modes of SSU signatures.

Layered hybrids. Now that we have shown how to change the message signing and verification keys
for all filler/inversion wires in layer ℓ = 1, we show how to do the same for rest of the layers. This is
done in a layer-by-layer fashion. Below, we describe how to do it for layer ℓ = 2 through a sequence

of hybrids Hyb
(b)
6,1,1,Hyb

(b)
6,1,2,Hyb

(b)
6,1,3,Hyb

(b)
6,1,4,Hyb

(b)
6,1,5. Once we have reached Hyb

(b)
6,1,5, similiar

arguments can be made for layer ℓ = 3 via hybrids Hyb
(b)
6,2,1,Hyb

(b)
6,2,2,Hyb

(b)
6,2,3,Hyb

(b)
6,2,4,Hyb

(b)
6,2,5.

These layer-by-layer changes carry on for rest of the layers till we finally arrive at hybrid Hyb
(b)
6,L−1,5.

Hybrids Hyb
(b)
6,1,1,Hyb

(b)
6,1,2,Hyb

(b)
6,1,3,Hyb

(b)
6,1,4,Hyb

(b)
6,1,5: The goal of this set of hybrids is to reach a

distribution where the message signing and verification keys for all filler/inversion wires of layer
ℓ = 2 are in binding mode. We show how to reach this distribution via a sequence of steps.
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• Hyb
(b)
6,1,1: For all filler/inversion wires in layer ℓ = 1, hardcode the expected message signatures

and messages. Further, update the message authentication check to directly compare messages
and message signatures against hardcoded values. Route authentication check remains the
same as before.

• Hyb
(b)
6,1,2: For all filler/inversion wires in layer ℓ = 1, hardcode the expected input ciphertext

and puncture the PRF keys. Further, replace message and route authentication checks with
ciphertext comparison.

At this point, observe that for all filler/inversion wires in layer ℓ = 2, the unpunctured message
signing keys can not be used to sign messages other than the challenge messages for the
challenge round t∗.

• Hyb
(b)
6,1,3: For all filler/inversion wires of layer ℓ = 2, puncture the message signing keys such

that they can sign any message for non-challenge round t ̸= t∗ and only the challenge message
for the challenge round t = t∗. These punctured message signing keys are hardcoded in the
gates in the first layer ℓ = 1. Importantly, changing these message signing keys does not
change the gate’s functionality because as noted in the previous hybrid, the unpunctured
signing keys for layer ℓ = 2 can not be used to sign messages other than the challenge messages
for the challenge round t∗ either. Consequently, the security of indistinguishability obfuscation

can be invoked to transition from Hyb
(b)
6,1,2 to Hyb

(b)
6,1,3 (formal proof in Claim E.10).

• Hyb
(b)
6,1,4: For all filler/inversion wires of layer ℓ = 2, bind the message signing and verification

keys such that the verification key accepts signatures for any message for non-challenge round
t ̸= t∗ and only the challenge message for the challenge round t = t∗. Indistinguishability
follows from indistinguishability of punctured and binding modes of SSU signatures.

• Hyb
(b)
6,1,5: For all filler/inversion wires of layer ℓ = 2, hardcode the expected output ciphertext

for the challenge round, and puncture the PRF keys. Further, update preparing the output
ciphertext to directly use the hardcoded values.

Hybrid Hyb
(b)
7 : In this hybrid, we invoke the pseudorandomness of PRF at punctured points to

change all the hardcoded ciphertexts to be uniformly random values except for a select few following
wires. If an inversion wire in the last layer has the destination that is corrupt, then, we do not make
any change to the hardwired outgoing ciphertexts in the last layer. Further, the challenge ciphertexts
given out to the adversary for u ∈ {s, s′} are set in a manner consistent with the hardcoded input
ciphertexts in layer ℓ = 1.

Hybrids Hyb
(b)
8 ,Hyb

(b)
9 : In Hyb

(b)
7 , the only sources of information of challenge bit b are the

hardwired message signing and verification keys for all filler/honest wires in all the circuits. So, in
these hybrids, we unbind and unpuncture all the message signing and verification keys.

Analysis of the final hybrid: In hybrid Hyb
(b)
9 , we claim that everything can be simulated from

the leakage function which is identical in both worlds. In other words, this hybrid contains no
information about the challenge bit b.

• Observe that the challenge ciphertext for u ∈ {s, s′} for the challenge round t∗ obtained by
the adversary are random strings independent of challenge bit b.
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• Observe that for all corrupt wires, while the punctured route verification keys and expected
routes are hardwired in the obfuscated circuits, they are the same across the two worlds b = 0
and b = 1. Further, punctured PRF keys that are hardwired contain no information about b.
Most hardwired ciphertexts in the obfuscated gates are uniformly random values and the ones
that are not random (i.e., inversion wires with corrupt receiver as destination) have the same
value across the two worlds by the admissibility criteria. Put in other words, for the challenge
round t∗, the circuit description (Figure 15) treats filler and inversion wires exactly the same.

Hence, Hyb
(0)
9 and Hyb

(1)
9 are identical. Formal arguments for this can be found in Claim E.16.

E.1.2 Formal Hybrids

Hybrid Hyb
(b)
0 : In this hybrid, the challenger plays the game NIARStatic-SelSingleCh-Invb,A(1λ)

with A.

Hybrid Hyb
(b)
1 : This hybrid is identical to Hyb

(b)
0 except that during the algorithm Setup∗, for

all the corrupt wires, the challenger punctures the route signing keys at the corresponding routes
and uses these punctured keys to generate the route signatures. More specifically, for each wire
(ℓ, i = jℓ), where jℓ ∈ rte∗u for some sender u ∈ KS , we compute the route signatures as follows:

(rsk(ℓ,i), rsk
′
(ℓ,i), rvk(ℓ,i), rpp(ℓ,i))← Sig.PuncturedSetup(1λ, tlen, lenrte, 1, rte

∗
u) ,

rsig∗ℓ = Sig.PSign(rpp(ℓ,i), rsk
′
(ℓ,i), 1, rte

∗
u) .

Hybrid Hyb
(b)
2 : This hybrid is identical to Hyb

(b)
1 except that during the algorithm Setup∗, the

challenger generates binding route signature keys for all the corrupt wires. More specifically, for
each wire (ℓ, i = jℓ), where jℓ ∈ rte∗u for some sender u ∈ KS , we compute the route signatures as
follows:

(rsk∗(ℓ,i), rvk
∗
(ℓ,i), rpp

∗
(ℓ,i))← Sig.BindingSetup(1λ, tlen, lenrte, 1, rte

∗
u) ,

rsig∗ℓ = Sig.PSign(rpp∗(ℓ,i), rsk
∗
(ℓ,i), 1, rte

∗
u).

Then, we replace the gates Gate(ℓ,g) for all ℓ ∈ [L− 1], g ∈ [G] as described in Figure 5.

Notation. Let Input(ℓ,g) and Output(ℓ,g) be the set of input and output wires of gate Gate(ℓ,g).

Hardcoded values. Same as in Hyb
(b)
0 except that for each corrupt input wire i ∈ Input(ℓ,g),

route public parameter rpp∗(ℓ,i) and route verification key rvk∗(ℓ,i) are hardcoded instead of rpp(ℓ,i)
and rvk(ℓ,i).

Procedure. Same as in Hyb
(b)
0 .

Figure 5: The circuit Gate(ℓ,g) in hybrid experiment Hyb
(b)
2 .
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Notation. Let Input(ℓ,g) and Output(ℓ,g) be the set of input and output wires of gate Gate(ℓ,g).

Hardcoded values. Same as in Hyb
(b)
2 . Additionally, for each corrupt input wire i ∈ Input(ℓ,g),

suppose it is on expected route rte∗u = (rte∗u = (j∗1 , . . . , j
∗
L), rsig

∗
u = (rsig∗1, . . . , rsig

∗
L)) for some

sender u ∈ [n]. Then, hardcode (i, rte∗u).

Procedure.

• Step 1: For each input wire i ∈ Input(ℓ,g), if it is a filler/honest wire, then, compute as in

Hyb
(b)
2 . Else:

– Step (a) is same as in Hyb
(b)
2 .

– Step (b): Decrypt and authenticate the message/route:

∗ Steps i, ii, iii are same as in Hyb
(b)
2 .

∗ Step iv: Parse rteu as (rteu = (j1, . . . , jL), rsigu = (rsig1, . . . , rsigL)) and perform
the following checks to authenticate the route rteu: If rteu ≠ rte∗u, abort. If
rsigℓ ̸= rsig∗ℓ , abort.

– Step (c): Prepare the output ciphertext CT(ℓ+1,jℓ+1):

∗ Step i: Let j = j∗ℓ+1. If CT(ℓ+1,j) has already been computed, then abort.

∗ Step ii: If ℓ < L−1, compute msig′ = Sig.Sign(mpp(ℓ+1,j),msk(ℓ+1,j), t, (x, rte
∗
u))

and CT(ℓ+1,j) = (x, rte∗u,msig′)⊕ PRF.Eval(k(ℓ+1,j), t).

∗ Step iii is same as in Hyb
(b)
2 .

• Steps 2 and 3 are same as in Hyb
(b)
2 .

Figure 6: The circuit Gate(ℓ,g) in hybrid experiment Hyb
(b)
3 .

Hybrid Hyb
(b)
3 : In this hybrid, for the obfuscated gates generated by Setup∗, for each corrupt wire,

we perform the route authentication checks by comparing with hardcoded routes and corresponding
signatures. Specifically, in each gate we hardcode the relevant routes sampled by Setup∗ along

with the route signature as computed in hybrid Hyb
(b)
2 . Then, we replace the gates Gate(ℓ,g) for all

ℓ ∈ [L− 1], g ∈ [G] as described in Figure 6.

Hybrid Hyb
(b)
4 : This hybrid is identical to Hyb

(b)
3 , except that during Setup∗, the challenger

punctures the message signing keys for all filler/inversion wires (1, i) in the first layer at the

challenge round t∗ and challenge plaintext x̃∗ = (x
(b)
u,t∗ , rte

(b)
u ) (or x̃∗ = (⊥filler,⊥filler) in case of filler),

that is, for each such wire (1, i),

(msk(1,i),msk′(1,i),mvk(1,i),mpp(1,i))← Sig.PuncturedSetup(1λ, tlen, lenm, t∗, x̃∗).

Then, during Enc algorithm, whenever the challenger has to compute message signatures for the
first layer, it computes them as follows:

msig(1,i) = Sig.PSign(mpp(1,i),msk′(1,i), ·, ·).
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Hybrid Hyb
(b)
5 : This hybrid is identical to Hyb

(b)
4 , except that during Setup∗, the challenger binds

message signature keys for all filler/inversion wires (1, i) in the first layer at the challenge round t∗

and challenge plaintext x̃∗ = (x
(b)
u,t∗ , rte

(b)
u ) (or x̃∗ = (⊥filler,⊥filler) in case of filler), that is, for each

such wire (1, i),

(msk∗(1,i),mvk∗(1,i),mpp∗(1,i))← Sig.BindingSetup(1λ, tlen, lenm, t∗, x̃∗).

Then, the challenger replaces the gates Gate(1,g) for all g ∈ [G] as described in Figure 7.

Notation. Let Input(1,g) and Output(1,g) be the set of input and output wires of gate Gate(1,g).

Hardcoded values. Same as in Hyb
(b)
3 except that for each filler/inversion wire i ∈ Input(1,g),

the message public parameter mpp∗(1,i) and the message verification key mvk∗(1,i) are hardcoded
instead of mpp(1,i),mvk(1,i).

Procedure. Same as in Hyb
(b)
3 .

Figure 7: The circuit Gate(ℓ,g) in hybrid experiment Hyb
(b)
5 .

Hybrid Hyb
(b)
6,ℓ,1 for each ℓ ∈ [L−1]: This hybrid is identical to Hyb

(b)
6,ℓ−1,5 (or Hyb

(b)
5 if ℓ = 1), except

that during Setup∗, for all the gates in layer ℓ, i.e., Gate(ℓ,g) for all g ∈ [G], for all filler/inversion

wires (ℓ, i) in the input layer ℓ, the challenger hardcodes the expected challenge message x∗(ℓ,i) = x
(b)
u,t∗

(or x∗(ℓ,ı) = ⊥filler in case of filler wire), the expected route rte∗ = rte∗u (or rte∗ = ⊥filler in case

of filler wire) and the message signature msig∗(ℓ,i) = Sig.PSign(mpp∗(ℓ,i),msk∗(ℓ,i), t
∗, (x∗, rte∗)) for

the challenge round t∗ and compares the message, route and message signature in the decrypted
plaintext against the respective hardcoded challenge message, expected route and message signature
instead of checking via Sig.Vf . Subsequently, for the outgoing wires, it uses the hardcoded x∗(ℓ,i)
and rte∗ for computing the outgoing ciphertexts in layer ℓ+ 1. More formally, for all g ∈ [G], the
gates Gate(ℓ,g) are changed as described in Figure 8.
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Notation. Let Input(ℓ,g) and Output(ℓ,g) be the set of input and output wires of gate Gate(ℓ,g).

Hardcoded values. Same as in Hyb
(b)
6,ℓ−1,5 (or Hyb

(b)
5 if ℓ = 1). Additionally, round t∗ is

hardcoded and for each filler/inversion input wire i ∈ Input(ℓ,g), the expected challenge message

x∗(ℓ,i), expected route rte∗ and signature msig∗(ℓ,i) are hardcoded.

Procedure. Gate(ℓ,g) takes as input a round t and a set of ciphertexts {CT(ℓ,i) : i ∈ Input(ℓ,g)}
corresponding to the input wires. Depending on the layer ℓ, it computes as follows.

• Step 1: For each input wire i ∈ Input(ℓ,g), if t ̸= t∗ or wire i is corrupt or is a non-inversion

honest wire, then, compute as in Hyb
(b)
6,ℓ−1,5 (or Hyb

(b)
5 if ℓ = 1). Else:

– Step (a) is same as in Hyb
(b)
6,ℓ−1,5 (or Hyb

(b)
5 if ℓ = 1).

– Step (b): Decrypt and authenticate the message/route:

∗ Step i: compute the plaintext (x, rte,msig) = CT(ℓ,i) ⊕ PRF.Eval(k(ℓ,i), t
∗).

∗ Step ii: If x ̸= x∗(ℓ,i) or rte ̸= rte∗ or msig ̸= msig∗(ℓ,i), then abort.

∗ Steps iii and iv are same as in Hyb
(b)
6,ℓ−1,5 (or Hyb

(b)
5 if ℓ = 1).

– Step (c): Prepare the output ciphertext CT(ℓ+1,jℓ+1):

∗ Step i is same as in Hyb
(b)
6,ℓ−1,5 (or Hyb

(b)
5 if ℓ = 1).

∗ Step ii: If ℓ < L − 1, compute msig′ = Sig.Sign(mpp(ℓ+1,j),msk(ℓ+1,j),

t∗, (x∗(ℓ,i), rte
∗)) and CT∗

(ℓ+1,j) = (x∗(ℓ,i), rte
∗,msig′)⊕ PRF.Eval( k(ℓ+1,j), t).

∗ Step iii: If ℓ = L− 1, compute CT∗
(L,j) = (x∗(ℓ,i),⊥,⊥)⊕ PRF.Eval(k(L,j), t).

• Step 2: For each j ∈ Output(ℓ,g) such that CT(ℓ+1,j) has not been computed yet, compute

filler ciphertexts as in Hyb
(b)
6,ℓ−1,5 (or Hyb

(b)
5 if ℓ = 1) if t ̸= t∗. Else:

– Step (a): Set x = ⊥filler and rte = ⊥filler.

– Steps (b) and (c) are same as in Hyb
(b)
6,ℓ−1,5 (or Hyb

(b)
5 if ℓ = 1).

• Step 3 is same as in Hyb
(b)
6,ℓ−1,5 (or Hyb

(b)
5 if ℓ = 1).

Figure 8: The circuit Gate(ℓ,g) in hybrid experiment Hyb
(b)
6,ℓ,1.

Hybrid Hyb
(b)
6,ℓ,2 for each ℓ ∈ [L−1]: This hybrid is identical to Hyb

(b)
6,ℓ,1, except that during Setup

∗,
when generating all circuits for layer ℓ, the challenger punctures the hardcoded decryption keys and
hardcodes the expected input ciphertexts and corresponding plaintexts for all filler/inversion input
wires for the challenge round t∗. In other words, for each filler/inversion input wire (ℓ, i) that is on
the route rte∗, do the following.

• The challenger hardcodes the expected input ciphertext CT
∗
(ℓ,i) = (x∗(ℓ,i), rte

∗, msig∗(ℓ,i)) ⊕
PRF.Eval(k(ℓ,i), t

∗) and compares the input ciphertext with hardcoded ciphertext instead of
decrypting and performing subsequent checks.
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• In addition, the challenger hardcodes the punctured PRF key k(ℓ,i) at challenge round t∗:
k∗(ℓ,i) ← PRF.Puncture(k(ℓ,i), t

∗).

Formally, the behavior of gate Gate(ℓ,g) for all g ∈ [G] as described in Figure 9.

Notation. Let Input(ℓ,g) and Output(ℓ,g) be the set of input and output wires of gate Gate(ℓ,g).

Hardcoded values. Same as in Hyb
(b)
6,ℓ,1, except that for each filler/inversion wire i ∈ Input(ℓ,g),

CT
∗
(ℓ,i) is hardcoded along with the corresponding challenge message x(ℓ,i) and route rte∗, and

msig∗(ℓ,i) is not hardcoded anymore. In addition, the punctured PRF key k∗(ℓ,i) is hardcoded

instead of k(ℓ,i), and is used for decrypting on wire (ℓ, i) during all rounds t ̸= t∗.

Procedure. Gate(ℓ,g) takes as input a round t and a set of ciphertexts {CT(ℓ,i) : i ∈ Input(ℓ,g)}
corresponding to the input wires. Depending on the layer ℓ, it computes as follows.

• Step 1: For each input wire i ∈ Input(ℓ,g), if t ̸= t∗ or wire i is corrupt or is a non-inversion

honest wire, then, compute as in Hyb
(b)
6,ℓ,1. Else:

– Steps (a) and (c) are same as in Hyb
(b)
6,ℓ,1.

– Step (b): if CT∗
(ℓ,i) ̸= CT

∗
(ℓ,i), then abort. If wire i is filler, go to the next i.

• Steps 2 and 3 are same as in Hyb
(b)
6,ℓ,1.

Figure 9: The circuit Gate(ℓ,g) in hybrid experiment Hyb
(b)
6,ℓ,2.

Hybrid Hyb
(b)
6,ℓ,3 for each ℓ ∈ [L − 1]: This hybrid is identical to Hyb

(b)
6,ℓ,2, except that during

Setup∗, the challenger punctures the message signing keys for all filler/inversion wires (ℓ+ 1, i) on
the path rte∗ = rte∗u (or rte∗ = ⊥filler in case of filler wire) at the challenge round t∗ and challenge

message x∗(ℓ+1,i) = x
(b)
u,t∗ (or x∗(ℓ+1,i) = ⊥filler in case of filler wire), that is, for each such wire (ℓ+ 1, i),

(msk(ℓ+1,i),msk′(ℓ+1,i),mvk(ℓ+1,i),mpp(ℓ+1,i))← Sig.PuncturedSetup(1λ, tlen, lenm, t∗, (x∗(ℓ+1,i), rte
∗
u)).

Consequently, the associated message signatures in the gates will be computed using Sig.PSign.
Formally, the behavior of gate Gate(ℓ,g) for all g ∈ [G] is changed as described in Figure 10.

Hybrid Hyb
(b)
6,ℓ,4 for each ℓ ∈ [L − 1]: This hybrid is identical to Hyb

(b)
6,ℓ,3, except that during

Setup∗, the challenger uses the binding setup to bind message signature keys for all filler/inversion

wires (ℓ+ 1, i) on the path rte∗ at the challenge round t∗ and challenge message x∗(ℓ,i) = x
(b)
u,t∗ (or

x∗(ℓ,i) = ⊥filler in case of filler wire), that is, for each such wire (1, i),

(msk∗(ℓ+1,i),mvk∗(ℓ+1,i),mpp∗(ℓ+1,i))← Sig.BindingSetup(1λ, tlen, lenm, t∗, (x∗(ℓ,i), rte
∗)).

Then, the challenger replaces the gates Gate(ℓ,g) and Gate(ℓ+1,g) for all g ∈ [G] as described in Figure 11
and Figure 12.
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Notation. Let Input(ℓ,g) and Output(ℓ,g) be the set of input and output wires of gate Gate(ℓ,g).

Hardcoded values. Same as in Hyb
(b)
6,ℓ,2, except that for each filler/inversion wire i ∈

Output(ℓ,g) in the output layer ℓ+ 1, the punctured message signing key msk′(ℓ+1,i) is hardcoded
instead of msk(ℓ+1,i).

Procedure.

• Step 1: For each input wire i ∈ Input(ℓ,g), if t ̸= t∗ or wire i is corrupt or is a non-inversion

honest wire, compute as in Hyb
(b)
6,ℓ,2. Else:

– Steps (a), (b) are same as in Hyb
(b)
6,ℓ,2.

– Step (c): Prepare the output ciphertext CT(ℓ+1,jℓ+1):

∗ Steps i and iii are same as in Hyb
(b)
6,ℓ,2.

∗ Step ii: If ℓ < L − 1, compute msig′ =

Sig.PSign(mpp(ℓ+1,j),msk′(ℓ+1,j), t
∗, (x

(b)
u,t∗ , rte

∗
u)) and CT∗

(ℓ+1,j) =

(x
(b)
u,t∗ , rte

∗
u,msig′)⊕ PRF.Eval(k(ℓ+1,j), t).

• Step 2: For each j ∈ Output(ℓ,g) such that CT(ℓ+1,j) has not been computed yet, compute

filler ciphertexts as in Hyb
(b)
6,ℓ,2 if t ̸= t∗. Else:

– Step (a): Set x = ⊥filler and rte = ⊥filler.

– Step (b): Compute msig′ = Sig.PSign(mpp(ℓ+1,j),msk′(ℓ+1,j), t
∗, (x, rte)).

– Step (c): Compute CT∗
(ℓ+1,j) ← (x, rte,msig′)⊕ PRF.Eval(k(ℓ+1,j), t

∗).

• Step 3 is same as in Hyb
(b)
6,ℓ,2.

Figure 10: The circuit Gate(ℓ,g) in hybrid experiment Hyb
(b)
6,ℓ,3.

Notation. Let Input(ℓ,g) and Output(ℓ,g) be the set of input and output wires of gate Gate(ℓ,g).

Hardcoded values. Same as in Hyb
(b)
6,ℓ,3 except that for each filler/inversion wire i ∈ Output(ℓ,g),

message public parameter mpp∗(ℓ+1,i) and message signing key msk∗(ℓ+1,i) are hardcoded instead

of mpp(ℓ+1,i),msk′(ℓ+1,i).

Procedure. Same as in Hyb
(b)
6,ℓ,3.

Figure 11: The circuit Gate(ℓ,g) in hybrid experiment Hyb
(b)
6,ℓ,4.
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Notation. Let Input(ℓ+1,g) and Output(ℓ+1,g) be the set of input and output wires of gate
Gate(ℓ+1,g).

Hardcoded values. Same as in Hyb
(b)
6,ℓ,3 except that for each filler/inversion wire i ∈

Input(ℓ+1,g), message public parameter mpp∗(ℓ+1,i) and message verification key mvk∗(ℓ+1,i) are
hardcoded instead of mpp(ℓ+1,i),mvk(ℓ+1,i).

Procedure. Same as in Hyb
(b)
6,ℓ,3.

Figure 12: The circuit Gate(ℓ+1,g) in hybrid experiment Hyb
(b)
6,ℓ,4.

Hybrid Hyb
(b)
6,ℓ,5 for each ℓ ∈ [L − 1]: This hybrid is identical to Hyb

(b)
6,ℓ,4, except that during

Setup∗, when generating all circuits for layer ℓ, for all filler/inversion wires (ℓ+ 1, i) on the
path rte∗ the challenger hardcodes the expected output ciphertexts for the challenge round t∗:

CT
∗
(ℓ+1,i) = (x

(b)
u,t∗ , rte

∗
u,msig∗(ℓ+1,i))⊕PRF.Eval(k(ℓ+1,i), t

∗) if ℓ < L−1, else CT
∗
(L,i) = (x

(b)
u,t∗ ,⊥,⊥)⊕

PRF.Eval(k(L,i), t
∗). Then, instead of dynamically computing the output ciphertext inside the

gate, the challenger simply uses the hardcoded ciphertext. In addition, the challenger hardcodes
punctured keys k∗(ℓ+1,i) ← PRF.Puncture(k(ℓ,i), t

∗) for the output wires into Gate(ℓ,g).
At this point, since both inversion and filler wires are dealt with by comparing the inputs to

fixed ciphertexts, and outputting fixed ciphertexts, the gate does not need to know which wires are
inversion wires and which are fillers during round t∗. We change the flow of the program to reflect
this.

Formally, the behavior of gate Gate(ℓ,g) for all g ∈ [G] is as described in Figure 13.
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Notation. Let Input(ℓ,g) and Output(ℓ,g) be the set of input and output wires of gate Gate(ℓ,g).

Hardcoded values. Same as Hyb
(b)
6,ℓ,4 except that for each filler/inversion wire i ∈ Output(ℓ,i)

in the output layer ℓ+ 1, the punctured PRF key k∗(ℓ+1,i) is hardcoded instead of k(ℓ+1,i).

Procedure. Gate(ℓ,g) takes as input a round t and a set of ciphertexts {CT(ℓ,i) : i ∈ Input(ℓ,g)}
corresponding to the input wires. Depending on the layer ℓ, it computes as follows.

1. Step 1: For each input wire i ∈ Input(ℓ,g), if t ̸= t∗ or wire i is corrupt or is a non-inversion

honest wire, compute as in Hyb
(b)
6,ℓ,5. Else:

(a) If ℓ = 1 and i is even, continue to next i. // It is a filler element and is ignored.

(b) Authenticate the message/route: If CT∗
(ℓ,i) ̸= CT

∗
(ℓ,i), then abort.

2. For each j ∈ Output(ℓ,g) such that CT(ℓ+1,j) has not been computed yet, compute filler

ciphertexts as in Hyb
(b)
6,ℓ,5 if t ̸= t∗. Else compute filler/inversion ciphertexts as CT∗

(ℓ+1,j) =

CT
∗
(ℓ+1,j).

3. Output {CT(ℓ+1,i) : i ∈ Output(ℓ,g)}.

Figure 13: The circuit Gate(ℓ,g) in hybrid experiment Hyb
(b)
6,ℓ,5.

Hybrid Hyb
(b)
7 : This hybrid is same as Hyb

(b)
6,L−1,5 except that during Setup∗, the challenger

changes the hardcoded ciphertexts as follows: In gates Gate(L−1,g) for all g ∈ [G], for all inversion
output wires i ∈ Output(L−1,g), if the corresponding receiver is corrupt, then, do not change anything.
Else, if it is an inversion output wire whose corresponding receiver is honest, or if it is filler wire
i ∈ Output(L−1,g), or if it filler/inversion wire i in any Gate(ℓ,g) for any ℓ < L−1 and for any g ∈ [G],
then, change the hardcoded ciphertext to be a random string of appropriate length. Further, the
challenge ciphertexts given out to the adversary for u ∈ {s, s′} are set in a manner consistent with
the hardcoded input ciphertexts in layer ℓ = 1.

Hybrid Hyb
(b)
8 : This hybrid is same as Hyb

(b)
7 except that during Setup∗, the challenger unbinds

all the message signature tuples that were previously binding: for all the message signature tuples
for all filler/inversion wires (ℓ, i) on the path rte∗ in all the layers, the challenger uses punctured

setup instead of binding setup at the challenge round t∗ and challenge message x∗(L,i) = x
(b)
u,t∗ (or

x∗(L,i) = ⊥filler in case of filler wire), that is, for each such wire (ℓ, i),

(msk(ℓ,i),msk′(ℓ,i),mvk(ℓ,i),mpp(ℓ,i))← Sig.PuncturedSetup(1λ, tlen, lenm, t∗, (x∗(L,i), rte
∗)).

Hybrid Hyb
(b)
9 : This hybrid is same as Hyb

(b)
8 except that during Setup∗, the challenger unpunctures

all the message signing keys that were previously punctured: for all the message signature key
pairs for all filler/inversion wires (ℓ, i) on the path rte∗ in all the layers, the challenger uses setup
algorithm and does not puncture anymore at the challenge round t∗ and challenge message x∗(L,i),
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that is, for each such wire (ℓ, i),

(msk(ℓ,i),mvk(ℓ,i),mpp(ℓ,i))← Sig.Setup(1λ, tlen, lenm).

Then, whenever the challenger has to compute a message signature during Enc algorithm or inside
a gate, it computes as: msig(ℓ,i) = Sig.Sign(mpp(ℓ,i),msk(ℓ,i), ·, ·).

To summarize, at this point the circuit Gate(ℓ,g) for all ℓ ∈ [L− 1] and g ∈ [G] is as in Figure 14
and Figure 15.

Notation. Let Input(ℓ,g) and Output(ℓ,g) be the set of input and output wires of gate Gate(ℓ,g).

Hardcoded values. Gate(ℓ,g) has hardcoded the following values:

• For each wire i ∈ Input(ℓ,g) in layer ℓ:

– if corrupt : the PRF key k(ℓ,i), the message public parameter mpp(ℓ,i), the message
verification key mvk(ℓ,i), the route public parameter rpp∗(ℓ,i), the route verification

key rvk∗(ℓ,i), the expected route rte∗u.

– if filler/inversion: the PRF key k∗(ℓ,i), the message public parameter mpp(ℓ,i), the
message verification key mvk(ℓ,i), the route public parameter rpp(ℓ,i), the route

verification key rvk(ℓ,i), the expected challenge ciphertext CT
∗
(ℓ,i).

• For each wire i ∈ Output(ℓ,g) in layer ℓ+ 1:

– if corrupt : the PRF key k(ℓ+1,i), the message public parameter mpp(ℓ+1,i). the
message signing key msk(ℓ+1,i).

– if filler/inversion: the PRF key k∗(ℓ+1,i), the message public parameter mpp(ℓ+1,i),

the message signing key msk(ℓ+1,i), the expected challenge ciphertext CT
∗
(ℓ+1,i).

• The challenge round t∗.

Figure 14: The circuit Gate(ℓ,g) in hybrid experiment Hyb
(b)
9 : notation and hardcoded values.
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Procedure. Gate(ℓ,g) takes as input a round t and a set of ciphertexts {CT(ℓ,i) : i ∈ Input(ℓ,g)}
corresponding to the input wires. Depending on the layer ℓ, it computes as follows.

1. For each input wire i ∈ Input(ℓ,g):

(a) If ℓ = 1 and i is even, continue to next i. // It is a filler wire and is ignored.

(b) Decrypt and authenticate the message/route:
If it is a filler/inversion wire and t = t∗: If CT∗

(ℓ,i) ̸= CT
∗
(ℓ,i), then abort.

If it is a (corrupt wire or is a non-inversion honest wire) or (any wire and t ̸= t∗):

i. Compute the plaintext (x, rte,msig) = CT(ℓ,i) ⊕ PRF.Eval(k(ℓ,i), t).

ii. If msig is not a valid signature of (x, rte) w.r.t. mpp(ℓ,i),mvk(ℓ,i) and round t,
then abort.

iii. If x = ⊥filler and rte = ⊥filler, go to the next i. // It is a filler wire and is ignored.

iv. Parse rte as (rte = (j1, . . . , jL), rsig = (rsig1, . . . , rsigL)) and perform the following
checks to authenticate the route rte:
If it is a corrupt wire: If rte ̸= rte∗u, abort. If rsigℓ ̸= rsig∗ℓ , abort.
If it is an honest wire and t ̸= t∗: Parse rte as (rte = (j1, . . . , jL), rsig =
(rsig1, . . . , rsigL)) and perform the following checks to authenticate the route
rte: If jℓ ̸= i or jℓ+1 /∈ Output(ℓ,g), then abort. If rsigℓ is not valid signature of
(j1, . . . , jL) w.r.t. rpp(ℓ,i) and rvk(ℓ,i), then abort.

(c) Prepare the output ciphertext CT(ℓ+1,jℓ+1):
If it is a corrupt wire:

i. Let j = j∗ℓ+1. If CT(ℓ+1,jℓ+1) has already been computed, then abort.

ii. If ℓ < L − 1, compute msig′ = Sig.Sign(mpp(ℓ+1,j),msk(ℓ+1,j), t, (x, rte
∗
u)) and

CT(ℓ+1,j) = (x, rte∗u,msig′)⊕ PRF.Eval(k(ℓ+1,j), t).

iii. If ℓ = L− 1 (output layer), compute CT(L,j) ← (x,⊥,⊥)⊕ PRF.Eval(k(L,j), t).

If it is an honest wire and t ̸= t∗:

i. Let j = jℓ+1. If CT(ℓ+1,jℓ+1) has already been computed, then abort.

ii. If ℓ < L − 1 (intermediate layer), compute msig′ = Sig.Sign(
mpp(ℓ+1,j),msk(ℓ+1,j), t, (x, rte)) and CT(ℓ+1,j) ← (x, rte,msig′) ⊕
PRF.Eval(k(ℓ+1,j), t).

iii. If ℓ = L− 1 (output layer), compute CT(L,j) ← (x,⊥,⊥)⊕ PRF.Eval(k(L,j), t).

2. For each j ∈ Output(ℓ,g) such that CT(ℓ+1,j) has not been computed yet:

If t = t∗, compute filler/inversion ciphertexts as CT∗
(ℓ+1,j) = CT

∗
(ℓ+1,j).

If t ̸= t∗, compute filler ciphertexts:

(a) Set x = ⊥filler and rte = ⊥filler.

(b) Compute msig′ = Sig.Sign(mpp(ℓ+1,j),msk(ℓ+1,j), t, (x, rte)).

(c) Compute CT(ℓ+1,j) ← (x, rte,msig′)⊕ PRF.Eval(k(ℓ+1,j), t).

3. Output {CT(ℓ+1,i) : i ∈ Output(ℓ,g)}.

Figure 15: The circuit Gate(ℓ,g) in hybrid experiment Hyb
(b)
9 : procedure.
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E.2 Proofs of Indistinguishability

Let the number of corrupt senders be θ = |KS | ≤ n.

Claim E.3. For b ∈ {0, 1}, assuming correctness of the SSU signatures scheme, adversary A’s
views in Hyb

(b)
0 and Hyb

(b)
1 are identical.

Proof. The difference between Hyb
(b)
0 and Hyb

(b)
1 is that the for all the corrupt wires, the route

signing keys are unpunctured in the former and punctured in the latter hybrid experiment. While no
route signing keys are in the view of the adversary, the adversary does get route signatures for corrupt
senders and these are computed differently across two hybrids. In the former, they are computed
using Sig.Sign algorithm and in the latter they are computed using Sig.PSign algorithm. It follows
from the correctness of the SSU signature scheme as defined in Section 5 that the input/output
behaviour of these two algorithms is identical for all unpunctured points. As these signatures are

generated by the challenger for some unpunctured points, hence, adversary A’s views in Hyb
(b)
0 and

Hyb
(b)
1 are identical.

Claim E.4. For b ∈ {0, 1}, assuming the SSU signature scheme satisfies computational indis-

tinguishability of punctured and binding setups, adversary A’s views in Hyb
(b)
1 and Hyb

(b)
2 are

computationally indistinguishable.

Proof. The difference between hybrids Hyb
(b)
1 and Hyb

(b)
2 is that in hybrid Hyb

(b)
1 , for all the corrupt

wires, the route signature key tuple (rsk′(ℓ,i), rvk(ℓ,i), rpp(ℓ,i)) is used where the signing key is punctured

and the verification key and public parameter are unpunctured. Whereas in hybrid Hyb
(b)
2 , for

all the corrupt wires, the route signature key tuple (rsk∗(ℓ,i), rvk
∗
(ℓ,i), rpp

∗
(ℓ,i)) is used where all the

keys are binding and are generated using binding setup. There are θ corrupt wires in each layer
ℓ = 1, . . . , L. For the sake of simplicity, call these total of L · θ wires to be w1, . . . , wL·θ. We

will show that the adversary A’s views in Hyb
(b)
1 and Hyb

(b)
2 are computationally indistinguishable

via a sequence of hybird H
(b)
1,0, . . . ,H

(b)
1,L·θ where in H1,i, for wire wj , the route signature key tuple

(rsk∗wj
, rvk∗wj

, rpp∗wj
) is used if j ≤ i, else the pair (rsk′wj

, rvkwj , rppwj
) is used. With this sequence,

observe that H
(b)
1,0 is identical to Hyb

(b)
1 and H

(b)
1,L·θ is identical to Hyb

(b)
2 . We will show that H

(b)
1,i−1

and H
(b)
1,i are computationally indistinguishable for all i ∈ [L · θ] and then, by triangle inequality it

follows that Hyb
(b)
1 and Hyb

(b)
2 are computationally indistinguishable.

All that remains to show now is that for all i ∈ [L · θ], H(b)
1,i−1 and H

(b)
1,i are computationally

indistinguishable. Let wire wi be on the route rte∗u for some u ∈ KS . Observe that the difference

between the two hybrids is that for wire wi in H
(b)
1,i−1, the route signature key tuple (rsk′wi

, rvkwi , rppwi
)

is used, whereas in H
(b)
1,i , the route signature key tuple (rsk∗wi

, rvk∗wi
, rpp∗wi

) is used. Then, we can
create a simple reduction from the computational indistinguishability of the two hybrids to the
computational indistinguishability of punctured and binding setup of SSU signature scheme which
states that the following two distibutions are computationally indistinguishable.

1. Let (rskwi , rsk
′
wi
, rvkwi , rppwi

)← Sig.PuncturedSetup(1λ, 0, lenrte, 1, rte
∗
u), and output (rsk′wi

, rvkwi , rppwi
).

2. Let (rsk∗wi
, rvk∗wi

, rpp∗wi
)← Sig.BindingSetup(1λ, 0, lenrte, 1, rte

∗
u), and output (rsk∗wi

, rvk∗wi
, rpp∗wi

).
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Claim E.5. For b ∈ {0, 1}, assuming that the SSU signature scheme is deterministic and statistically
unforgeable at the binding point and the indistinguishability obfuscation scheme is secure, adversary

A’s views in Hyb
(b)
2 and Hyb

(b)
3 are computationally indistinguishable.

Proof. The difference between the hybrids Hyb
(b)
2 and Hyb

(b)
3 is in the way route authentication

checks are performed for all corrupt wires in all the obfuscated gates. In particular, for all gates
Gate(ℓ,g) for ℓ ∈ [L − 1] and g ∈ [G], after decryption of incoming ciphertext on a corrupt wire
(ℓ, i) and message authentication of the plaintext (containing route information rteu = (rteu =
(j1, . . . , jL), rsigu = (rsig1, . . . , rsigL)) for some user u ∈ KS), the route authentication in hybrid

Hyb
(b)
2 is performed by checking

jℓ = i, jℓ+1 ∈ Output(ℓ,i), Sig.Vf(rpp∗(ℓ,i), rvk
∗
(ℓ,i), rteu, 1, rsigℓ) = 1. (1)

If any of these checks fail, the circuit aborts further computation. On the other hand, the route

authentication in hybrid Hyb
(b)
3 is performed by checking

rteu = rte∗u, rsigℓ = rsig∗ℓ , (2)

where the expected route for this wire rte∗u = (rte∗u = (j∗1 , . . . , j
∗
L), rsig

∗ = (rsig∗1, . . . , rsig
∗
L)) is

hardcoded in the gate circuit. If we can argue that for all gates Gate(ℓ,g) for ℓ ∈ [L− 1] and g ∈ [G],
the gate circuit in the two hybrid experiments have identical input/output behaviour, then, the
computational indistinguishability of the adversary A’s views in the two hybrids follows from the
security of the indistinguishability obfuscation scheme.

All that remains to be shown is that for any gate Gate(ℓ,g), the input/output behaviour of the
circuits in the two hybrids is indeed identical. In other words, we want to show that it is equivalent
to check either Equation (1) or Equation (2). If Equation (2) is satisfied, then, it is straighforward
to observe that Equation (1) is also satisfied. It is non-trivial to see that whenever Equation (1) is
satisfied, then, Equation (2) is also satisfied. To see this, notice that rpp∗(ℓ,i) and rvk∗(ℓ,i) are binding
route public parameter and binding route verification key and satisfy statistical unforgeability
at round 1 and value (j∗1 , . . . , j

∗
L) as defined in Definition 5.1. Hence, the signature verification

algorithm will only accept signature rsig∗ℓ for (j∗1 , . . . , j
∗
L) and no other signature for this or any

other route. Then, it follows that Equation (2) is also satisfied.

Claim E.6. For b ∈ {0, 1}, assuming correctness of the SSU signatures scheme, adversary A’s
views in Hyb

(b)
3 and Hyb

(b)
4 are identical.

Proof. The difference between Hyb
(b)
3 and Hyb

(b)
4 is that the for all the filler/inversion wires (1, i), the

message signing keys are unpunctured in the former and punctured in the latter hybrid experiment at

the challenge rount t∗ and the respective challenge plaintexts x̃∗ = (x
(b)
u,t∗ , rte

(b)
u ) in case of inversion

wire for some u ∈ HS or x̃∗ = (⊥filler,⊥filler) in case of filler wire. But, notice that none of these
message signing keys are in the view of the adversary. The only difference then is the ciphertexts

that the adversary obtains from the challenger for the inversion wires in the first layer. In Hyb
(b)
3 ,

the Enc algorithm internally uses Sig.Sign to compute the message signatures, whereas in Hyb
(b)
4 ,

the Enc algorithm internally uses Sig.PSign to compute the message signatures. It follows from
the correctness of the SSU signature scheme as defined in Section 5 that the input/output behaviour
of these two algorithms is identical for all unpunctured points. As these signatures are generated by

the challenger for some unpunctured points, hence, it follows that the adversary A’s views in Hyb
(b)
3

and Hyb
(b)
4 are identical.
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Claim E.7. For b ∈ {0, 1}, assuming the SSU signature scheme satisfies computational indis-

tinguishability of punctured and binding setups, adversary A’s views in Hyb
(b)
4 and Hyb

(b)
5 are

computationally indistinguishable.

Proof. The difference between hybrids Hyb
(b)
4 and Hyb

(b)
5 is that in hybrid Hyb

(b)
5 , for all the

filler/inversion wires (1, i), the message signature key tuple (msk′(1,i),mvk(1,i),mpp(1,i)) is used
where the signing key is punctured and the verification key and public parameter are unpunctured.

Whereas in hybrid Hyb
(b)
5 , for all the filler/inversion wires, the message signature key tuple

(msk∗(1,i),mvk∗(1,i),mpp∗(1,i)) is used where all the keys are binding and are generated using binding

setup. Suppose that there are η < 2n filler/inversion wires in the first layer ℓ = 1. For the sake of

simplicity, call these η wires to be w1, . . . , wη. We will show that the adversary A’s views in Hyb
(b)
4

and Hyb
(b)
5 are computationally indistinguishable via a sequence of hybird H

(b)
4,0, . . . ,H

(b)
4,η where in

H4,i, for wire wj , the message signature key tuple (msk∗wj
,mvk∗wj

,mpp∗wj
) is used if j ≤ i, else the

tuple (msk′wj
,mvkwj ,mppwj

) is used. With this sequence, observe that H
(b)
4,0 is identical to Hyb

(b)
4 and

H
(b)
4,η is identical to Hyb

(b)
5 . We will show that H

(b)
4,i−1 and H

(b)
4,i are computationally indistinguishable

for all i ∈ [η] and then, by triangle inequality it follows that Hyb
(b)
4 and Hyb

(b)
5 are computationally

indistinguishable.

All that remains to show now is that for all i ∈ [η], H
(b)
4,i−1 and H

(b)
4,i are computationally

indistinguishable. Observe that the difference between the two hybrids is the treatment of message
signature key tuple for wire wi. If wire wi is an inversion wire, then, the challenge plaintext is

x̃∗ = (x
(b)
u,t∗ , rte

(b)
u ) for some user u ∈ HS . Else, if it is a filler wire, then, the challenge plaintext

is x̃∗ = (⊥filler,⊥filler). In H
(b)
4,i−1, the message signature key tuple (msk′wi

,mvkwi ,mppwi
) is used,

whereas in H
(b)
4,i , the message signature key tuple (msk∗wi

,mvk∗wi
,mpp∗wi

) is used. In both the above
hybrids the binding is done at challenge round t∗ and challenge plaintext x̃∗. We can create a simple
reduction from the computational indistinguishability of the two hybrids to the computational
indistinguishability of punctured and binding setups of SSU signature scheme which states that the
following two distibutions are computationally indistinguishable.

1. Let (mskwi ,msk′wi
,mvkwi ,mvkwi)← Sig.PuncturedSetup(1λ, tlen, lenm, t∗, x̃∗), and output (msk′wi

,
mvkwi ,mvkwi).

2. Let (msk∗wi
,mvk∗wi

,mpp∗wi
)← Sig.BindingSetup(1λ, tlen, lenm, t∗, x̃∗), and output (msk∗wi

,mvk∗wi
,mpp∗wi

).

Claim E.8. For b ∈ {0, 1} and ℓ ∈ [L− 1], assuming the SSU signature scheme is a deterministic
signature scheme and is statistically unforgeable at the binding point and that the indistinguishability

obfuscation scheme is secure, adversary A’s views in Hyb
(b)
6,ℓ−1,5 (or Hyb

(b)
5 if ℓ = 1) and Hyb

(b)
6,ℓ,1 are

computationally indistinguishable.

Proof. For the sake of simplicity, we define Hyb
(b)
6,0,5 = Hyb

(b)
5 in this proof.

The only difference between Hyb
(b)
6,ℓ,1 and Hyb

(b)
6,ℓ−1,5 is in the way that the message signatures

msig(ℓ,i) for all filler/inversion wires i ∈ Input(ℓ,g) are verified inside of each obfuscated program

Gate(ℓ,g), g ∈ [G] during round t∗. In Hyb
(b)
6,ℓ−1,5, this is done by using the verification algorithm

Sig.Vf , whereas in Hyb
(b)
6,ℓ,1 this is done by checking msig(ℓ,i) is equal to to the hardcoded signature

msig∗(ℓ,i), by checking that the signed message x is equal to the hardcoded message x∗(ℓ,i). and by

checking that the route rte is equal to the hardcoded route rte∗.
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We prove indistinguishability via a sequence of subhybrids Hyb′α, where α ∈ {1, . . . , 2n}.
We define Hyb′α to produce programs {Gate(ℓ,g)}g∈[G] which verify all message signatures msig(ℓ,i)

as in Hyb
(b)
6,ℓ,1 when i < α, and as in Hyb

(b)
6,ℓ−1,5 when i ≥ α. It is clear that Hyb′1 = Hyb

(b)
6,ℓ−1,5

and that Hyb′2n = Hyb
(b)
6,ℓ,1. Proving the claim thus reduces to proving indistinguishability between

Hyb′α−1 and Hyb′α for all α. Note that the only difference between Hyb′α and Hyb′α−1 is in the
behavior of a single Gate(ℓ,g) for g such that α ∈ Input(ℓ,g). Provided that the circuits obfuscated in

Hyb′α−1 and Hyb′α to produce Gate(ℓ,g) are functionally equivalent, a simple reduction to security of
the obfuscation scheme shows that Hyb′α−1 and Hyb′α are computationally indistinguishable. Thus
we have reduced the claim to showing functional equivalence of the two circuits in question.

To show functional equivalence, we observe that the only possible point at which the circuit
outputs could differ is where CT(ℓ,α) is an encryption of some message (x(ℓ,α), rte,msig(ℓ,α)) with
respect to round t∗ which was not generated honestly. It is clear that in Hyb′α, because the
filler/inversion message x∗(ℓ,i), route rte∗ and signature msig(ℓ,α) are hardcoded, Gate(ℓ,g) rejects all
dishonestly generated ciphertexts. Because of statistical unforgeability of the SSU signature scheme
at point (t∗, x∗(ℓ,i)) with respect to the key tuple (msk∗(ℓ,α),mvk∗(ℓ,α),mpp∗(ℓ,α)) which was generated

by Sig.BindingSetup, the only message that is accepted by Sig.Vf is (x∗(ℓ,i), rte
∗), and by the fact

that the scheme is a determistic signature scheme, the only accepted signature is msig∗(ℓ,α). Thus,

in Hyb′α−1 at round t∗, Gate(ℓ,g) also rejects all inputs where CT(ℓ,α) encrypts a message which was
dishonestly generated. It follows that the circuits have identical behavior with respect to CT(ℓ,α),
and thus are functionally equivalent.

Claim E.9. For b ∈ {0, 1} and ℓ ∈ [L− 1], assuming correctness of the punctured PRF scheme and

the indistinguishability obfuscation scheme is secure, adversary A’s views in Hyb
(b)
6,ℓ,1 and Hyb

(b)
6,ℓ,2

are computationally indistinguishable.

Proof. The only difference between Hyb
(b)
6,ℓ,2 and Hyb

(b)
6,ℓ,1 is that in the obfuscated programs

{Gate(ℓ,g)}g of Hyb
(b)
6,ℓ,2, the obfuscated programs inversion/filler wire keys are punctured at t∗,

and during round t∗ inversion/filler wire ciphertexts CT(ℓ,i) are not decrypted directly, and instead

are compared with a fixed value CT
∗
(ℓ,i), whose corresponding decryption is also hardcoded and used

for the rest of the procedure.
We prove indistinguishability via a sequence of subhybrids Hyb′α, where α ∈ {1, . . . , 2n}.
We define Hyb′α to produce programs {Gate(ℓ,g)}g∈[G] which are identical to those in Hyb

(b)
6,ℓ,1,

except for the following differences:

• For all i < α, if this is an inversion/filler wire, hardcode punctured key k∗(ℓ,i). Treat input

inversion/filler wire ciphertexts CT(ℓ,i) in the same way as in Hyb
(b)
6,ℓ,2 (i.e., do not decrypt

directly, instead check whether CT(ℓ,i) = CT
∗
(ℓ,i), and if so, use corresponding hardcoded

plaintext in the rest of the procedure.

• For all i ≥ α, hardcode non-punctured key k(ℓ,i). Treat input inversion/filler wire ciphertexts

CT(ℓ,i) in the same way as in Hyb
(b)
6,ℓ,1 (i.e., decrypt directly and proceed as normal).

It is clear that Hyb′1 = Hyb
(b)
6,ℓ,1 and that Hyb′2n = Hyb

(b)
6,ℓ,2. Proving the claim thus reduces to

proving indistinguishability between Hyb′α−1 and Hyb′α for all α. Note that the only difference
between Hyb′α and Hyb′α−1 is in the circuit Gate(ℓ,g) which is used to generate a single obfuscated

72



program Gate(ℓ,g) for g such that α ∈ Input(ℓ,g). Provided that the circuits obfuscated in Hyb′α−1

and Hyb′α to produce Gate(ℓ,g) are functionally equivalent, a simple reduction to security of the
obfuscation scheme shows that Hyb′α−1 and Hyb′α are computationally indistinguishable. Thus we
have reduced the claim to showing functional equivalence of the two circuits in question.

To show functional equivalence, note that the behavior of Gate(ℓ,g) only differs across Hyb′α−1

and Hyb′α in terms of the behavior for the input wire (ℓ, α− 1). We focus on this wire. In Hyb′α−1,
Gate(ℓ,g) only accepts exactly one value for CT(ℓ,α−1) during round t∗. This is because Gate(ℓ,g)
decrypts CT(ℓ,α−1) and then compares the decrypted plaintext to fixed hardcoded values, and aborts
if they are unequal. Since decryption is deterministic, only one such ciphertext CT(ℓ,α−1) does
not cause an abort. Since in Hyb′α Gate(ℓ,g) hardcodes this exact ciphertext and the corresponding
plaintext, the behavior with respect to round t∗ is identical. Because of correctness of the punctured
PRF key at all non-punctured points t ̸= t∗, the behavior of Gate(ℓ,g) between Hyb′α−1 and Hyb′α
across all other rounds are also identical. Thus, Gate(ℓ,g) is functionally equivalent across these two
subhybrids.

Claim E.10. For b ∈ {0, 1} and ℓ ∈ [L− 1], assuming correctness of the SSU signature scheme,

and assuming the indistinguishability obfuscation scheme is secure, adversary A’s views in Hyb
(b)
6,ℓ,2

and Hyb
(b)
6,ℓ,3 are computationally indistinguishable.

Proof. The only difference between Hyb
(b)
6,ℓ,3 and Hyb

(b)
6,ℓ,2 is that in Hyb

(b)
6,ℓ,3, for inversion/filler

output wires (ℓ+ 1, i), the challenger hardcodes punctured message signing keys msk′(ℓ+1,i) instead
of unpunctured ones. The obfuscated gates then use the punctured signing algorithm Sig.PSign
when signing outgoing messages at layer ℓ+ 1.

We prove indistinguishability via a sequence of subhybrids Hyb′α, where α ∈ {1, . . . , 2n}.
We define Hyb′α to produce programs {Gate(ℓ,g)}g∈[G] which are identical to those in Hyb

(b)
6,ℓ,2,

except for the following differences:

• For all i < α, if wire i is an inversion/filler wire, hardcode punctured signing key msk′(ℓ+1,i),
and sign messages for output wire (ℓ+ 1, i) using Sig.PSign.

• For all i ≥ α, hardcode non-punctured signing key msk(ℓ+1,i), and sign messages for output
wire (ℓ+ 1, i) using Sig.Sign.

It is clear that Hyb′1 = Hyb
(b)
6,ℓ,2 and that Hyb′2n = Hyb

(b)
6,ℓ,3. Proving the claim thus reduces to

proving indistinguishability between Hyb′α−1 and Hyb′α for all α. Note that the only difference
between Hyb′α and Hyb′α−1 is in the circuit Gate(ℓ,g) which is used to generate a single obfuscated

program Gate(ℓ,g) for g such that α ∈ Output(ℓ,g). Provided that the circuits obfuscated in Hyb′α−1

and Hyb′α to produce Gate(ℓ,g) are functionally equivalent, a simple reduction to security of the
obfuscation scheme shows that Hyb′α−1 and Hyb′α are computationally indistinguishable. Thus we
have reduced the claim to showing functional equivalence of the two circuits in question. Functional
equivalence follows directly from correctness of the SSU signature scheme and the observation that
no message is ever signed with respect to round t∗ except for the exact binding message.

Claim E.11. For b ∈ {0, 1} and ℓ ∈ [L − 1], assuming the SSU signature scheme satisfies

computational indistinguishability of punctured and binding setups, adversary A’s views in Hyb
(b)
6,ℓ,3

and Hyb
(b)
6,ℓ,4 are computationally indistinguishable.
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Proof. The only difference between Hyb
(b)
6,ℓ,4 and Hyb

(b)
6,ℓ,3 is that in Hyb

(b)
6,ℓ,4, the message signature

key tuples for inversion/filler wires (ℓ+ 1, i), i ∈ [2n] are all generated using Sig.BindingSetup,

whereas in Hyb
(b)
6,ℓ,3 they are generated using Sig.PuncturedSetup.

We prove indistinguishability via a sequence of subhybrids Hyb′α, where α ∈ {1, . . . , 2n}.
We define Hyb′α to generate message signature key tuples (msk(ℓ+1,i),mvk(ℓ+1,i), mpp(ℓ+1,i)) using

Sig.BindingSetup for all inversion/filler i < α, and to generate (msk(ℓ+1,i),mvk(ℓ+1,i),mpp(ℓ+1,i))

using Sig.PuncturedSetup for all i ≥ α. It is clear that Hyb′1 = Hyb
(b)
6,ℓ,3 and that Hyb′2n =

Hyb
(b)
6,ℓ,4. Proving the claim thus reduces to proving indistinguishability between Hyb′α−1 and

Hyb′α for all α. Note that the only difference between Hyb′α and Hyb′α−1 is in the key tuple
(msk(ℓ+1,α−1),mvk(ℓ+1,α−1),mpp(ℓ+1,α−1)). As such, a simple reduction to computational indis-
tinguishability of the punctured and binding setups of the SSU signature scheme shows this
indistinguishability. This proves the claim.

Claim E.12. For b ∈ {0, 1}, assuming the indistinguishability obfuscation scheme is secure,

adversary A’s views in Hyb
(b)
6,ℓ,4 and Hyb

(b)
6,ℓ,5 are computationally indistinguishable.

Proof. The only difference between Hyb
(b)
6,ℓ,5 and Hyb

(b)
6,ℓ,4 is in the behavior of circuits {Gate(ℓ,g)}g∈[G]

used to generated the obfuscated programs {Gate(ℓ,g)}g∈[G]. In Hyb
(b)
6,ℓ,5 during round t∗, for in-

version/filler output wires (ℓ+ 1, i), Gate(ℓ,g) sets CT(ℓ+1,i) to be a hardcoded value CT
∗
(ℓ+1,i),

where CT
∗
(ℓ+1,i) = (x

(b)
u,t∗ , rte

∗
u,msig∗(ℓ+1,i)) ⊕ PRF.Eval(k(ℓ+1,i), t

∗) if ℓ < L − 1, else CT
∗
(ℓ+1,i) =

(x
(b)
u,t∗ ,⊥,⊥)⊕ PRF.Eval(k(L,i), t

∗), and outputs this value for wire (ℓ+ 1, i).
We prove indistinguishability via a sequence of subhybrids Hyb′α, where α ∈ {1, . . . , 2n}.
We define Hyb′α to produce programs {Gate(ℓ,g)}g∈[G] which are identical to those in Hyb

(b)
6,ℓ,4,

except for the following difference. During round t∗:

• For all i < α such that (ℓ+ 1, i) is a filler/inversion wire, output CT(ℓ+1,i) = CT
∗
(ℓ+1,i) for this

wire.

• For all i ≥ α, act as in Hyb
(b)
6,ℓ,4.

It is clear that Hyb′1 = Hyb
(b)
6,ℓ,4 and that Hyb′2n = Hyb

(b)
6,ℓ,5. Proving the claim thus reduces to

proving indistinguishability between Hyb′α−1 and Hyb′α for all α. Note that the only difference
between Hyb′α and Hyb′α−1 is in the circuit Gate(ℓ,g) which is used to generate a single obfuscated

program Gate(ℓ,g) for g such that α ∈ Output(ℓ,g). Provided that the circuits obfuscated in Hyb′α−1

and Hyb′α to produce Gate(ℓ,g) are functionally equivalent, a simple reduction to security of the
obfuscation scheme shows that Hyb′α−1 and Hyb′α are computationally indistinguishable. Thus we
have reduced the claim to showing functional equivalence of the two circuits in question.

To show functional equivalence, observe that the only wire where the two circuits could possibly
differ is the output wire (ℓ+ 1, α− 1). Functional equivalence then follows directly from the following
facts:

• No corrupt wire from layer ℓ could be re-routed to a filler/inversion wire in layer ℓ+1 because

of the hardwired routes for corrupt wires in hybrid Hyb
(b)
3 (Figure 6).

74



• During round t∗, the plaintext (x, rte,msig′) encrypted by Gate(ℓ,g) to form CT(ℓ+1,α−1) in
Hyb′α−1 has values x and rte are fixed and exactly equal to the corresponding plaintext

components of CT
∗
(ℓ+1,α−1) in Hyb′α, along with the fact that the SSU signature scheme

produces deterministic signatures (which means that the signature msig′ is also fixed and
equal to the corresponding component of CT

∗
(ℓ+1,α−1)).

Claim E.13. For b ∈ {0, 1}, assuming pseudorandomness of the PRF at punctured points, adversary

A’s views in Hyb
(b)
6,L−1,5 and Hyb

(b)
7 are computationally indistinguishable.

Proof. The difference between the two hybrids is in (i) how are the hardcoded ciphertexts for the
challenge round t∗ for all the filler/inversion wires in all the layers (with the exception of inversion
output wires directed towards corrupt receivers in the last layer) computed by the challenger, and
(ii) the challenge ciphertexts for u ∈ {s, s′} given to the adversary for the challenge round t∗. In

Hyb
(b)
6,L−1,5, the hardcoded ciphertext for wire (ℓ, i) is of the form CT

∗
(ℓ,i) = (x̃∗,msig∗(ℓ,i))⊕ y∗, where

msig∗(ℓ,i) = Sig.PSign(mpp∗(ℓ,i),msk∗(ℓ,i), t
∗, x̃∗) and y∗ = PRF.Eval(k(ℓ,i), t

∗). If it is an inversion

wire corresponding to route rte(b)u for some u ∈ HS , then, x̃
∗ = (x

(b)
u,t∗ , rte

(b)
u ). Else, if it is a filler

wire, then, x̃∗ = (⊥filler,⊥filler). On the other hand, in Hyb
(b)
7 , for a filler/inversion wire (ℓ, i),

CT
∗
(ℓ,i) = random. Further, in both hybrids Hyb

(b)
6,L−1,5 and Hyb

(b)
7 , the challenge ciphertexts for

u ∈ {s, s′} given to the adversary for the challenge round t∗ are set consistent with the hardcoded
incoming ciphertexts in the obfuscated gates in layer ℓ = 1 in those respective hybrids. To argue
the computationally indistinguishability of adversary’s view in these two hybrids, notice that the
hardcoded PRF key k∗(ℓ,i) is punctured at t∗, whereas y∗ is the PRF evaluation at exactly this
punctured point. So, one can use the pseudorandomness of the PRF at punctured points to show
the computational indistinguishability.

For a filler/inversion wire (ℓ, i), we want to change from CT
∗
(ℓ,i) = (x̃∗,msig∗(ℓ,i))⊕ y∗ to CT

∗
(ℓ,i) =

random, where y∗ = PRF.Eval(k(ℓ,i), t
∗). We first invoke the psuedorandomness of PRF at punctured

points to change to y∗ = random′. Then, we can change from CT
∗
(ℓ,i) = (x̃∗,msig∗(ℓ,i))⊕ random′ to

CT
∗
(ℓ,i) = random as both are identically distributed. This is exactly what we want in Hyb

(b)
7 .

Claim E.14. For b ∈ {0, 1}, assuming the SSU signature scheme satisfies computational in-

distinguishability of punctured and binding setups, adversary A’s views in Hyb
(b)
7 and Hyb

(b)
8 are

computationally indistinguishable.

Proof. Similar to Claim E.7, except that here the message verification keys and message public
parameters are changed from binding to unbinding for all the filler/inversion wires (ℓ, i) in all the
layers.

Claim E.15. For b ∈ {0, 1}, assuming the SSU signatures scheme is correct, and the indistinguisha-

bility obfuscation scheme is secure, adversary A’s views in Hyb
(b)
8 and Hyb

(b)
9 are computationally

indistinguishable.

Proof. The difference between the two hybrids is that in Hyb
(b)
8 , for all the filler/inversion wires

(ℓ, i), punctured message signing key msk′(ℓ,i) is used, whereas in Hyb
(b)
9 , unpunctured message signing

key msk(ℓ,i) is used. This difference reflects in how message signatures are computed in all the circuit
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Gate(ℓ,g) and by the Enc algorithm for ciphertexts corresponding to inversion wires in layer 1. For
ciphertexts corresponding to inversion wires in layer 1, identical distibution can be proven similar
to Claim E.6 assuming correctness of SSU signatures.

We will argue that for all the circuits Gate(ℓ,g), the input/output behaviour is still the same.
Hence, the indistinguishability of the two hybrids follows through a sequence of intermediate
hybrid transitions where we switch the circuit for one gate at a time and the computational
indistinguishability of any two consequtive intermediate hybrids can be shown through a simple
reduction to the security of the indistinguishability obfuscation scheme.

All that remains to be shown is that all the circuits Gate(ℓ,g) in the two hybrids have identical
input/output behaviour. Observe that the only points where the circuits in the two hybrids may
differ are precisely the points that were punctured. msk(ℓ,i) can be used to sign even for challenge
round t∗ and non-challenge messages x ̸= x∗ but msk′(ℓ,i) can’t sign for these points. But observe

that in Hyb
(b)
9 , msk(ℓ,i) is never used to sign messages for the challenge round t∗ as the hardcoded

ciphertexts are directly used instead. Hence, it follows that all the circuits Gate(ℓ,g) in the two
hybrids indeed have identical input/output behaviour.

Claim E.16. Adversary A’s views in Hyb
(0)
9 and Hyb

(1)
9 are identical.

Proof. Note that the ciphertexts received by A in round t∗ on behalf of s and s′ are random values
independent of b, and the other ciphertexts received by A during that round are independent of b by
the definition of the hybrids. Recall the formal description of circuits Gate(ℓ,g) described in Figure 14

and Figure 15. It suffices to argue that the router token received by A in Hyb
(b)
9 and Hyb

(1−b)
9

contain no information about the challenge bit b. Observe that the gate circuit had no information
about challenge bit b in the real world description. So, the only new sources of information about it
could be the changes done to the circuit that are highlighted in the figures. We will now argue that
all of them have no information about the challenge bit b.

• For each corrupt wire i ∈ Input(ℓ,i), route information rte∗u, binding route public parameter
rpp∗(ℓ,i) and binding route verification rvk∗(ℓ,i) are hardwired, where the route public parameter

and route verification key are binding at route rte∗u. The admissibility criteria requires that
for each u ∈ KS , π

(0)(u) = π(1)(u). Hence, the hardcoded routes for corrupt senders have
no information about the challenge bit b. It also follows then that the binding route public
parameters and the binding verification keys for corrupt senders do not contain any information
about the challenge bit b.

• For each filler/inversion wire i ∈ Input(ℓ,i), the punctured PRF key k∗(ℓ,i) is hardwired. This
key is punctured at the challenge round t∗, and hence has no information about the challenge
bit b. For these wires, the expected challenge ciphertext CT

∗
(ℓ,i) is also hardcoded. As all of

these are uniformly random values, hence, it follows that they have no information about the
challenge bit b.

• For each filler/inversion wire i ∈ Output(ℓ,i), the punctured PRF key k∗(ℓ+1,i) is hardwired.
This key is punctured at the challenge round t∗, and hence has no information about the
challenge bit b. For these wires, the expected challenge ciphertext CT

∗
(ℓ+1,i) is also hardcoded.

If ℓ ̸= L − 1, all of these are uniformly random values, hence, it follows that they have no
information about the challenge bit b. If ℓ = L− 1 and the wire’s destination is not a corrupt
receiver, then also all of these are uniformly random values. Hence, it follows that they
have no information about the challenge bit b. If ℓ = L − 1 and the wire’s destination is a
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corrupt receiver, then, the hardcoded value is the what the corrupt receiver would expect. The
admissibility criteria dictates that if two different honest senders are sending some message
to a corrupt receiver in the two worlds b = 0 and b = 1, then, the message values by the
two honest senders should be the same. Hence, it follows that the same ciphertext value is
hardcoded in the two worlds and consequently, it leaks no information about the challenge bit
b.

• It is possible that a wire could be filler when b = 0 and inversion when b = 1. Hence, it could
have different treatment by the circuit procedure in the two worlds. But notice that in both

hybrids Hyb
(0)
9 and Hyb

(1)
9 , for the challenge round t = t∗, the treatment of filler and inversion

wires is exactly the same. Hence, it leaks no information about the challenge bit b.

From the above analysis, it follows that adversary A’s views in Hyb
(0)
9 and Hyb

(1)
9 are identical.

F From Static Corruption to Adaptive Corruption

F.1 A Compiler for Upgrading from Static to Adaptive Corruption

In this section, we present a generic compiler that lifts any NIAR scheme that satisfies static-
corruption security to a NIAR scheme with full security under adaptive corruptions and adaptive
queries (Definition 3.1).

Starting from a static corruption NIAR scheme denoted NIAR′, we will use an extra pseudorandom
function PRF to encrypt the plaintext first, before encrypting it again with NIAR′, thus creating
two layers of encryption. For the security proof, we will need the PRF to be secure against selective-
opening attacks (Definition B.7), which is implied by the standard security for pseudorandom
functions as shown by Abraham et al. [ACD+19]. We formally describe the compiler below.
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A compiler from static corruption to adaptive corruption

Setup(1λ, len, n, π):

• For all i ∈ [n]: ki ← PRF.Setup(1λ).

• Let ({ek′u}u∈[n], {rk′u}u∈[n], tk′)← NIAR′.Setup(1λ, len, n, π).

• For each sender u ∈ [n], let eku := (kπ(u), ek
′
u); for each receiver u ∈ [n], let rku := (ku, rk

′
u);

and let tk = tk′. Output ({eku}u∈[n], {rku}u∈[n], tk).

Enc(eku,xu, t): // Parse eku := (k′u, ek
′
u)

• Output ctu,t ← NIAR′.Enc(ek′u,PRF.Eval(k′u, t)⊕ xu, t).

Rte(tk, t, ct1, . . . , ctn):

• Let (ct′1, . . . , ct
′
n)← NIAR′.Rte(tk, t, ct1, . . . , ctn) and output (ct′1, . . . , ct

′
n).

Dec(rku, ct
′
u, t): // Parse rku := (ku, rk

′
u)

• Let y = PRF.Eval(ku, t)⊕ NIAR′.Dec(rk′u, ct
′
u, t), and output y.

Figure 16: A compiler from static corruption to adaptive corruption

Theorem F.1 (Static to adaptive corruption compiler). Suppose that NIAR′ satisfies Definition A.1
subject to a static-corruption, single-inversion, and all-receiver-corrupting adverasary, and suppose
that PRF is a selective-opening secure pseudorandom function (i.e. Definition B.7). Then, NIAR
satisfies full security (i.e., Definition 3.1).

Proof roadmap. In the remainder of this section, we prove Theorem F.1. The proof goes through
multiple intermediate steps.

1. We start from a NIAR secure w.r.t. inversion under a static-corruption, all-receiver-corrupting
adversary. We prove that the same scheme is also secure w.r.t. inversion under an adaptive-
corruption, all-receiver-corrupting adversary. (see Appendix F.2 and Lemma F.2).

2. Next, given a NIAR scheme secure w.r.t. inversion under an adaptive-corruption, all-receiver-
corrupting adversary, we remove the “inversion” restriction, and prove that it is also secure for
an arbitrary pair of permutations under an adaptive-corruption, all-receiver-corrupting adversary
(see Appendix F.3 and Lemma F.3).

3. Finally, given a NIAR scheme that is secure under an adaptive-corruption, all-receiver-corrupting
adversary (for an arbitrary pair of permutations), we show that the above static-to-adaptive
compiler gives a full NIAR scheme secure under Definition 3.1 (see Appendix F.4 and Lemma F.4).
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F.2 Adaptive Corruption Under Single-Inversion and All-Receiver-Corruption

Lemma F.2. If a NIAR scheme satisfies security under a static-corruption, single-inversion, and
all-receiver-corrupting adversary, then it also satisfies security under a single-inversion adversary
who corrupts all receivers upfront, and corrupts senders adaptively.

Proof. Consider a non-uniform p.p.t. admissible adversary A who corrupts all receivers upfront and
corrupts the senders adaptively. A is trying to distinguish its views in experiments NIARFull0,A(1λ)
and NIARFull1,A(1λ) subject to single inversion. Then, we construct a p.p.t. admissible adversary B
that plays a game with its own challenger C and leverages A to distinguish between NIARStatic0,B(1λ)
and NIARStatic1,B(1λ) subject to single inversion and all-receiver-corruption. The description of B
is as follows.

1. B gets (n, len, π(0), π(1)) from A(1λ). Let s1, s2 be the two senders involved in the inversion. For
its game with C, it chooses to corrupt the senders K′

S = [n] \ {s1, s2}, the receivers K′
R = [n],

and it sends (n, len,K′
S ,K′

R, π
(0), π(1)) to C. Then, C computes ({eku}u∈[n], {rku}u∈[n], tk) ←

Setup(1λ, len, n, π(b)) and gives the terms (tk, {eku}u∈K′
S
, {rku}u∈[n]) to B. B now passes (tk, {rku}u∈[n])

to A since A always corrupts all receivers upfront.

2. In each time step t:

• Upon receiving an encryption query {x(0)u,t , x
(1)
u,t}u∈HS

from A where HS is the set of senders A
has not corrupted yet, B sends the encryption query {x(0)u,t , x

(1)
u,t}u∈{s1,s2} to C, and gets back

ciphertexts {ctu,t}u∈{s1,s2}. For every u ∈ HS\{s1, s2}, by the admissibility rule on A, it must

be that x
(0)
u,t = x

(1)
u,t ; thus, B computes ctu,t = Enc(eku, x

(0)
u,t , t) on its own since it knows eku.

Now, B sends {ctu,t}u∈HS
to A.

• Upon receiving a corruption query to corrupt some sender u ∈ [n], by the admissibility rule
on A, u cannot be s1 or s2. Therefore, B returns eku to A, as well as all random coins used
in earlier encryption queries involving u.

3. B outputs whatever A outputs.

Observe that if A is admissible and respects single inversion, then, B is also admissible and respects
single inversion. By construction, B respects all receiver corruption. Further, for b ∈ {0, 1},
when C uses the challenge bit b, A’s view is identical to NIARFullb,A(1λ). Therefore, if A has
non-negligible advantage in distinguishing NIARFull0,A(1λ) and NIARFull1,A(1λ), then B has non-
negligible advantage in distinguishing NIARStatic0,B and NIARStatic1,B.

F.3 Removing the Single Inversion Restriction

We next remove the single inversion restriction. The proof is very similar to that of Lemma D.6
where we removed the single inversion restriction but for the static corruption scenario.

Lemma F.3 (Removing the single inversion restriction (adaptive corruption)). Suppose we are
given a NIAR scheme that satisfies security subject to a single-inversion adversary who always
corrupts all receivers upfront, and corrupts senders adaptively. Then, the same scheme is also secure
for an arbitrary pair of permutations, subject to an adversary who always corrupts all receivers
upfront, and corrupts senders adaptively.
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Proof. The proof is almost identical to that of Lemma D.6, except that now, to prove each pair
of adjacent hybrids indistinguishable, the reduction B also has to answer A’s adaptive sender
corruption queries. B can simply forward such queries to its own challenger and forward back the
answers. By A’s admissibility rule, A can never corrupt a sender that is in C(π(0), π(1)). Therefore,
in the adaptive corruption case, it still holds that if A is admissible, then B is admissible too.

F.4 Removing the All Receiver Corruption Restriction

Finally, given a NIAR scheme that is secure under an adversary who corrupts all receivers upfront
but can adaptively corrupt senders, we can remove the all-receiver-corruption restriction with the
compiler described in F.1.

Lemma F.4 (Removing the all receiver corruption restriction). Suppose that NIAR′ satisfies security
under an adversary who corrupts all receivers upfront but can adaptively corrupt senders. Then, the
compiled NIAR scheme described in F.1 satisfies full NIAR security (Definition 3.1).

Proof. We first define what is a conspicuously honest receiver.

Conspicuously honest receiver. Consider the experiment NIARFullb,A. Recall that A submits two
permutations π(0) and π(1) upfront. Consider some receiver j, and let s0 and s1 be the corresponding
senders to j in π(0) and π(1), respectively, that is, for b ∈ {0, 1}, π(b)(sb) = j. Suppose during some

time step t, the adversary A submits an encryption query for the plaintext vectors {x(0)u,t , x
(1)
u,t}u∈HS

where HS denotes the so-far honest senders, and it turns out that x
(0)
s0,t
̸= x

(1)
s1,t

, i.e., j is receiving
two different messages in the two worlds. Then, at this moment, we know that the receiver j can
never be corrupt by A due to the admissibility rules on A. Henceforth, such a receiver is called a
conspicuously honest receiver. Observe also the corresponding senders s0 and s1 (which could be
the same) must be conspicuously honest too, by the admissibility rule on A.

Consider the following hybrid experiment indexed by a bit b ∈ {0, 1}.

Experiment Hybb. Hybb is almost the same as NIARFullb, except with the following modifications:

whenever A submits an encryption query for the plaintext vectors {x(0)u,t , x
(1)
u,t}u∈HS

where HS denotes
the so-far honest senders, the challenger responds with the following ciphertexts for each u ∈ HS :

• if π(b)(u) is conspicuously honest, then compute ctu,t = NIAR′.Enc(eku, r, t) for a randomly
chosen r of appropriate length;

• else compute ctu,t = NIAR.Enc(eku, x
(b)
u,t, t) honestly.

Claim F.5. Suppose that the PRF satisfies selective opening security, and let b ∈ {0, 1}. Then,
for the compiled NIAR scheme, it holds that for any non-uniform p.p.t. admissible adversary A, its
views in Hybb and NIARFullb are computationally indistinguishable.

Proof. We prove it for b = 0, since the case when b = 1 is symmetric. Given an efficient NIARFull
adversary A, we will construct an efficient reduction B that breaks the selective-opening security of
the PRF.

• At the beginning B creates n PRF instances with its own challenger C, one corresponding to
each receiver. Except for the PRF keys which B does not know at the beginning, B samples all
other terms of the NIAR scheme using the honest algorithms.

• Whenever A makes a corruption query for a receiver u ∈ [n], B corrupts the corresponding PRF
key with its own challenger C. It then responds to A with u’s secret key in the NIAR scheme.
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• Whenever A makes a corruption query for a sender u ∈ [n], B corrupts the corresponding PRF
key for the receiver π(0)(u) with its own challenger C. It then responds to A with u’s secret key
in the NIAR scheme. Additionally, it returns the random coins consumed by u’s Enc algorithm in
all previous time steps.

• WheneverAmakes an encryption query for a time step t with the challenge plaintexts {x(0)u,t , x
(1)
u,t}u∈HS

,
B computes the answers in the following way: for every u ∈ HS ,

– if π(0)(u) is conspicuously honest, then B submits to C a challenge query for the PRF instance
corresponding to receiver π(0)(u), with the challenge message t, and it obtains the response c∗;

– else it submits an evaluation query to C for the the PRF instance corresponding to receiver
π(0)(u), with challenge message t and obtains the responses c∗;

– B computes ctu,t = NIAR′.Enc(ek′u, c
∗ ⊕ x

(0)
u,t , t).

Clearly, if the selective-opening PRF challenger C always encrypts the real challenge message, then
A’s view is the same as in NIARFull0. Otherwise, if C always returns random strings for challenge
queries, then A’s view is the same as in Hyb0. As mentioned earlier, if a receiver is conspicuously
honest, then the senders paired with it in either π(0) or π(1) must be conspicuously honest too,
meaning that an admissible adversary A will never corrupt it. Therefore, B is admissible w.r.t. to
its own security game. Summarizing the above, B can translate A’s advantage in distinguishing
NIARFull0 and Hyb0 into its own advantage in breaking the selective-opening PRF security.

Claim F.6. Suppose that the underlying NIAR′ scheme satisfies Definition 3.1 subject to an adversary
that corrupts all receivers upfront and can adaptively corrupt senders. Then, for any non-uniform
p.p.t. admissible adversary A, its views in Hyb0 and Hyb1 are computationally indistinguishable.

Proof. In Hybb where b ∈ {0, 1}, in each time step, to answer the adversary A’s encryption query

{x(0)u,t , x
(1)
u,t}u∈HS

for the so-far honest set HS , the challenge does the following: for every u ∈ HS ,

• either call NIAR′.Enc(eku, x
(b)
u,t ⊕ PRF.Eval(kπ(b)(u), t), t) to encrypt the inner-message x

(b)
u,t ⊕

PRF.Eval(kπ(b)(u), t), where kπ(b)(u) denotes the PRF key of the receiver paired with sender u,
which is also sender u’s PRF key.

• or call NIAR′.Enc(eku, r, t) to encrypt some random inner-message r.

If A respects its admissibilty rules, then for each receiver u, then the following must hold:

1. For every eventually corrupt receiver u, let s0 and s1 be its corresponding senders in π(0) and π(1),

respectively; then it must be that for every time step t, the inner-messages x
(0)
s0,t
⊕PRF.Eval(ku, t),

and x
(1)
s1,t
⊕ PRF.Eval(ku, t) (to be passed to NIAR′.Enc in Hyb0 and Hyb1 respectively) are the

same;

2. For every eventually honest receiver u,

• For any t before u becomes conspicuously honest, the inner-messages x
(0)
s0,t
⊕ PRF.Eval(ku, t)

and x
(1)
s1,t
⊕ PRF.Eval(ku, t) are the same;

• For any t during or after the round in which u becomes conspicuously honest, the inner-
messages to be passed to NIAR′.Enc in Hyb0 and Hyb1 are both random inner-messages.
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Now, imagine that the challenger has some randomness tape Γ[·, ·] which can be viewed as a two
dimensional array. The randomness tape is sampled at the beginning of the experiment Hybb where
b ∈ {0, 1}. Later, whenever the challenger needs to sample a random inner-message for some sender
whose destination is u in π(b), it will read the random coins Γ[u, t] off the randomness tape where t
denotes the current time.

It suffices to prove that conditioned on any fixed choice of the randomness tape Γ, A’s views
in Hyb0 and Hyb1 are computationally indistinguishable. This can be accomplished through a
straightforward reduction to the security of the underlying NIAR′ scheme. Basically, consider a
reduction B that interacts with its own challenger as well as A.

• B passes the terms (n, len, π(0), π(1)) sent by A directly to its own challenger, and gets back tk.
It passes tk to A.

• Further, B chooses the PRF key ku for every receiver u.

• B corrupts all receivers upfront with its own challenger, and receives {rk′u}u∈[n].

• Whenever A submits an encryption query during some time step t, B computes the two corre-
sponding inner-messages and pass them to its own challenger. It receives some ciphertexts from
its own challenger and forwards them to A.

• Whenever A makes a corruption query for some receiver u, B sends to A its key (ku, rk
′
u).

• Whenever A makes a corruption query for some sender, B forwards the query to its own challenger
and passes the answer back to A. Moreover, it reveals the corresponding player’s PRF key to A.
If A is admissible, then a corrupt sender must have the same receiver in both π(0) and π(1), so B
can always identify a unique PRF key to return to A.

• B outputs whatever A outputs.

Now, if B’s challenger is in world b = 0, then A’s view is identically distributed as Hyb0. Else if B’s
challenger is in world b = 1, then A’s view is identically distributed as Hyb1. Further, for a fixed
randomness tape, B is admissible as long as A is admissible.

Completing the proof of Lemma F.4. Combining Claims I.8 and I.9, we have that NIARFull0 ≈c

Hyb0 ≈c Hyb1 ≈c NIARFull
1 where ≈c denotes computational indistinguishability. This completes

the proof of Lemma F.4.

F.5 Completing the Proof of Theorem F.1

Theorem F.1 follows directly by combining Lemmas F.2 to F.4.

G Impossibility of Simulation Security Under Adaptive Corruption

So far in our paper, we have used indistinguishability-based security definitions. Shi and Wu [SW21]
showed that under static corruption, indistinguishability-based security is equivalent to simulation-
based security. In this section, we introduce a natural simulation-based security notion for adap-
tive corruption, and somewhat surprisingly at first sight, we show that the same equivalence of
indistinguishability- and simulation-based security no longer holds under adaptive corruption. We
show this by first proving an impossibility result for simulation security under adaptive corruption.
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G.1 NIAR Full Simulation Security

We first define a real-world experiment in which the adversary can 1) adaptively corrupt senders or
receivers; and 2) ask the challenger to encrypt on behalf of the currently honest senders in any time
step. We use the notation Cor(·) to denote a corruption oracle. Whenever Cor receives a specified
sender or receiver to corrupt, it returns the newly corrupted player’s secret key, as well as all the
randomness the player has used in all past time steps7; it then updates the honest sender and
receiver sets HS and HR, respectively.

Real-world experiment RealA(1λ).

1. (n, len, π)← A(1λ).

2. HS = [n], HR = [n].

3. ({eku}u∈[n], {rku}u∈[n], tk)← Setup(1λ, len, n, π).

4. For t = 1, 2, . . .:

• if t = 1: {xu,t}u∈HS
← ACor(·)(tk); else {xu,t}u∈HS

.← ACor(·)({CTu,t−1}u∈HS
).

• For all u ∈ HS , CTu,t ← Enc(eku, xu,t).

Next, we define an ideal world experiment which involves a stateful simulator Sim. The
simulator’s job is to simulate the setup as well as responses to the adversary’s encryption and
corruption queries, based on only the permitted leakage which includes the following information: 1)
all corrupt senders’ destinations; 2) for every corrupt sender u, the challenge message submitted by
the adversary on behalf of u in every round before u became corrupt; 3) for every corrupt receiver,
the message it receives during every round in which its corresponding sender remains honest.

Ideal-world experiment IdealSimA(1λ).

1. (n, len, π)← A(1λ).

2. HS = [n], HR = [n].

3. tk← Sim(1λ, len, n), and A receives tk.

4. For t = 1, 2, . . .:

• Repeat the following for zero to multiple times until A eventually outputs {xu,t}u∈HS
.

– A sends to Sim a player to corrupt, in the form of either (sender, u) or (receiver, u);

– if A output (sender, u) in the previous step, Sim additionally receives the newly sender’s
destination as well as {xu,t′}t′<t;

– else if A output (receiver, u), Sim additionally receives {xπ−1(u),t′}t′<t′′ where t′′ is the
first time step in which sender π−1(u)’s became corrupt or t′′ = t if sender π−1(u) remains
honest;

– Sim returns to A the newly corrupted player’s simulated secret key, as well as the simulated
random coins consumed by the player in all previous rounds;

– update HS and HR accordingly;

7In our scheme, the receiver does not consume randomness during decryption. In this case, Cor(·) only needs to
return the random coins used by a newly corrupted sender in all previous time steps.
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• Sim receives {(π(u), xu,t)}u∈π(HS)∩KR
, where KR = [n]\HR, i.e., the plaintexts received by

every currently corrupt receiver that is paired with an honest sender. Sim now outputs
{CTu,t}u∈HS

.

Definition G.1 (NIAR full simulation security). We say that a NIAR scheme satisfies full simulation
security, iff for any non-uniform p.p.t. adversary A, there exists a p.p.t. simulator Sim and a negligible
function negl(·), such that A cannot distinguish RealA(1λ) and IdealSim,A(1λ) except with negl(λ)
probability.

G.2 Impossibility of Simulation Security Under Adaptive Corruption

Theorem G.2. There does not exist any NIAR scheme that supports an unbounded (i.e., a-priori
unknown) number of time steps while satisfying full simulation security.

Proof. The proof is very similar to Nielsen’s result [Nie02]. For the same of reaching a contradiction,
suppose there is a scheme denoted NIAR that supports an unbounded number of time steps while
satisfying full simulation security. Since decryption must enjoy perfect correctness, without loss of
generality, we may assume that the receiver’s decryption algorithm is deterministic in NIAR. We
show that there exists an encoding scheme that leverages NIAR to compress a long random string.

Let ℓ be a sufficiently large natural number, and let ρ
$←{0, 1}ℓ be a long random string.

To encode the string ρ with a common reference string r independent of ρ, we perform the
following:

• First, initialize Sim with the random coins r.

• Next , call Sim with 1λ for some sufficiently large λ, len = 1, and n = 1, which outputs tk.

• Next, for t = 1, 2, . . . , ℓ, invoke Sim with no permitted leakage and receive a simulated ciphertext
CTt.

• Finally, corrupt the only receiver and invoke Sim, providing it with the leaked messages ρ. Sim
outputs a receiver key rk.

• The resulting encoding is defined as (tk, rk).

To decode a codeword of the form (tk, rk) with the same common reference string r independent
of the message, perform the following:

• Initialize Sim with the same random string r.

• Call Sim with 1λ, len = 1, and n = 1.

• Now, for t = 1, . . . , ℓ, we perform the following: 1) call Sim to produce CTt; and 2) call the Rte
algorithm which uses tk and transforms CTt to CT′

t.

• Finally, we use rk to decrypt every CT′
t, and output the decrypted bits.

Due to Definition G.1 and the fact that the receiver’s decryption algorithm is polynomially bounded,
it must be that the above decoding algorithm is correct except with negligible probability. The
theorem follows by making ℓ a constant factor larger than the total length of the codeword (tk, rk),
by Shannon’s source coding theorem [Sha48] formalized in Proposition B.6.
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H Upgrade to Adaptive Corruption for Non-Interactive Differen-
tially Anonymous Router

In this section, we consider NIDAR schemes with receiver-insider protection. They were introduced
by the recent work of Bünz, Hu, Matsuo and Shi [BHMS21]. A NIDAR scheme has exactly the
same syntax as the NIAR scheme, except that it has a more relaxed security notion called (ϵ, δ)-
computational differential anonymity (CDA). We show that the same static-to-adaptive-corruption
compiler described in Appendix F.1 can be applied to NIDAR schemes.

First, we review the security definitions under static and adaptive corruptions, respectively —
the definitions are the same as Bünz, Hu, Matsuo and Shi [BHMS21], focusing on the receiver-
insider-protection setting.

NIDAR security under static corruption. The NIDAR security experiment, denoted NIDARStaticb,A(1λ),
is the same as NIARStaticb,A(1λ), except that we now change the admissibility rule on the adversary
to additionally require that the adversary must submit two permutations that are separated by a
single inversion.

Definition H.1 (Computational differential anonymity against static corruptions). Let ϵ > 0
and δ ∈ (0, 1) be functions of the security parameter λ. We say that a NIDAR scheme satisfies
(ϵ, δ)-computational differential anonymity (or (ϵ, δ)-CDA for short) against static corruptions, iff
for any non-uniform p.p.t. admissible A, for every λ ∈ N, it holds that

Pr[NIDARStatic0,A(1λ) = 1] ≤ eϵ(λ) × Pr[NIDARStatic1,A(1λ) = 1] + δ(λ).

NIDAR full security. The NIDARFullb,A(1λ) experiment is the same as the NIARFullb,A(1λ) game
as defined in Section 3.2, except that we now modify the admissibility rule to additionally require
that the adversary must submit two permutations that are separated by a single inversion.

Definition H.2 (Full computational differential anonymity). Let ϵ > 0 and δ ∈ (0, 1) be functions of
the security parameter λ. We say that a NIDAR scheme satisfies full (ϵ, δ)-computational differential
anonymity, iff for any non-uniform p.p.t. admissible A, for every λ ∈ N, it holds that

Pr[NIDARFull0,A(1λ) = 1] ≤ eϵ(λ) × Pr[NIDARFull1,A(1λ) = 1] + δ(λ).

Static-to-adaptive corruption upgrade for NIDAR. The same compiler in in Appendix F.1
works for NIDAR as well. The proof is essentially the same as in Appendix F, except that
now we replace NIAR security under static/adaptive corruption with (ϵ, δ)-CDA security under
static/adaptive corruption, respectively.

I NIAR Sender-insider Protection: From Static Corruption to
Adaptive Corruption

Bunn, Kushilevitz, and Ostrovsky [BKO22] defined the dual version of our security notion for
NIAR, that is, they consider sender-insider-protection rather than receiver-insider-protection. In
the sender-insider-protection setting, we assume that the adversary knows the corrupt receivers’
respective senders; however, it does not know which honest receivers corrupt senders are sending
to. In this section, we show that the same static-to-adaptive corruption compiler in Appendix F.1
works for sender-insider protection NIAR schemes as well.
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I.1 Definition: NIAR Security under Sender Insider Protection

We first review the security definitions for the sender-insider-protection setting. We will start with
the adaptive corruption version, since the static corruption can be obtained by additionally requiring
that the adversary declare all corrupt players upfront.

In comparison with the receiver-insider definitions, the security game remains the same, and the
main change is that the admissibility rules are now the dual of the previous rules as highlighted
below in blue.

Admissibility rules for sender-insider protection. We say that A is admissible iff with
probability 1, the following holds where HS and HR refer to the eventually honest sender and
receiver set, respectively, and define KR = [n] \ HR,KS = [n] \ HS to be the eventually corrupt
sender and receiver sets, respectively:

1. For all eventually corrupt receivers v ∈ KR, π
(0)−1

(v) = π(1)−1
(v).

2. For any eventually corrupt sender u ∈ KS , for any t in which u was not corrupt yet, x
(0)
u,t = x

(1)
u,t .

In other words, here we require that in the two alternate worlds b = 0 or b = 1, every eventually
corrupt sender should be sending the same message in all rounds before it was corrupted.

3. For all rounds t, and for any v ∈ KR ∩ π(0)(HS) = KR ∩ π(1)(HS), x
(0)
u,t = x

(1)
u,t where u =

(π(0))−1(v) = (π(1))−1(v). In other words, here we require that in the two alternate worlds b = 0
or 1, every eventually corrupt receiver receiving from an eventually honest sender must receive
the same message in all rounds.

Definition I.1 (NIAR full security with sender-insider protection). We say that a NIAR scheme is
fully secure with sender-insider protection iff for any non-uniform p.p.t. admissible A, its views in
the two experiments NIARFull0,A(1λ) and NIARFull1,A(1λ) are computationally indistinguishable.

Definition I.2 (Security with sender-insider protection against static corruptions). We say that a
NIAR scheme satisfies security with sender-insider protection against static corruption, iff Defini-
tion I.1 is satisfied for any admissible p.p.t. adversary that always declares the corrupted players
upfront.

I.2 Upgrade from Static to Adaptive Corruption for Sender-Insider Protection

We now show that the same compiler in Appendix F.1 works for the sender-insider protection setting
as well. More formally, we shall prove the following theorem.

Theorem I.3 (Static to adaptive corruption compiler). Suppose that NIAR′ satisfies Definition I.2
subject to a single-inversion, and all-sender-corrupting adverasary, and suppose that PRF is a
selective-opening secure pseudorandom function (i.e. Definition B.7). Then, the compiled NIAR con-
struction shown in Figure 16 satisfies full security with sender-insider protection (i.e., Definition I.1).

We first give a proof roadmap below, and then present the detailed proofs in Appendices I.2.1
to I.2.3.

Proof roadmap. In the remainder of this section, we prove Theorem I.3. The proof goes through
multiple intermediate steps.
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1. We start from a NIAR secure with sender-insider protection w.r.t. inversion under a static-
corruption, all-sender-corrupting adversary. We prove that the same scheme is also secure with
sender-insider protection w.r.t. inversion under an adaptive-corruption, all-sender-corrupting
adversary (see Appendix I.2.1 and Lemma I.4).

2. Next, given a NIAR scheme secure with sender-insider protection w.r.t. inversion under an
adaptive-corruption, all-sender-corrupting adversary, we remove the “inversion” restriction, and
prove that it is also secure with sender-insider protection for an arbitrary pair of permutations un-
der an adaptive-corruption, all-sender-corrupting adversary (see Appendix I.2.2 and Lemma I.5).

3. Finally, given a NIAR scheme that is secure with sender-insider protection under an adaptive-
corruption, all-sender-corrupting adversary (for an arbitrary pair of permutations), we show that
the static-to-adaptive compiler in Figure 16 gives a NIAR scheme secure under Definition I.1
(see Appendix I.2.3 and Lemma I.6).

I.2.1 Adaptive Corruption Under Single-Inversion and All-Sender-Corruption

Lemma I.4. If a NIAR scheme satisfies security with sender-insider protection under a static-
corruption, single-inversion, and all-sender-corrupting adversary, then it also satisfies security with
sender-insider protection under a single-inversion adversary who corrupts all senders upfront, and
corrupts receivers adaptively.

Proof. Consider a non-uniform p.p.t. admissible adversary A who corrupts all senders upfront and
corrupts the receivers adaptively. A is trying to distinguish its views in experiments NIARFull0,A(1λ)
and NIARFull1,A(1λ) subject to single inversion. Then, we construct a p.p.t. admissible adversary B
that plays a game with its own challenger C and leverages A to distinguish between NIARStatic0,B(1λ)
and NIARStatic1,B(1λ) subject to single inversion and all-sender-corruption. The description of B is
as follows.

1. B gets (n, len, π(0), π(1)) fromA(1λ). Let s1, s2 be the two senders involved in the inversion. Let the
corresponding receivers involved in the inversion be r1, r2. For its game with C, it chooses to cor-
rupt the senders K′

S = [n], the receivers K′
R = [n]\{r1, r2}, and it sends (n, len,K′

S ,K′
R, π

(0), π(1))
to C. Then, C computes ({eku}u∈[n], {rku}u∈[n], tk)← Setup(1λ, len, n, π(b)) and gives the terms
(tk, {eku}u∈[n], {rku}u∈K′

R
) to B. B now passes (tk, {eku}u∈[n]) to A since A always corrupts all

senders upfront.

2. In each time step t:

• A makes no encryption queries as HS = ∅.
• Upon receiving a corruption query to corrupt some receiver u ∈ [n], by the admissibility rule
on A, u cannot be r1 or r2. Therefore, B returns rku to A.

3. B outputs whatever A outputs.

Observe that if A is admissible and respects single inversion, then, B is also admissible and
respects single inversion. By construction, B respects all-sender-corruption. Further, for b ∈ {0, 1},
when C uses the challenge bit b, A’s view is identical to NIARFullb,A(1λ). Therefore, if A has
non-negligible advantage in distinguishing NIARFull0,A(1λ) and NIARFull1,A(1λ), then B has non-
negligible advantage in distinguishing NIARStatic0,B and NIARStatic1,B.
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I.2.2 Removing the Single Inversion Restriction

We next remove the single inversion restriction. The proof is very similar to that of Lemma D.6
where we removed the single inversion restriction but for the static corruption in receiver-insider
protection scenario.

Lemma I.5 (Removing the single inversion restriction (adaptive corruption)). Suppose we are given
a NIAR scheme that satisfies security with sender-insider protection subject to a single-inversion
adversary who always corrupts all senders upfront, and corrupts receivers adaptively. Then, the
same scheme is also secure with sender-insider protection for an arbitrary pair of permutations,
subject to an adversary who always corrupts all senders upfront, and corrupts receivers adaptively.

Proof. Given any two permutations π(0) and π(1) submitted by A, let C(π(0), π(1)) be the set of
receivers that have different senders in π(0) and π(1) — by the admissibility rule on A, it must be
that C(π(0), π(1)) are all honest receivers.

We prove for the simpler case receivers are corrupted statically instead of adaptively. The proof
for corrupting receivers adaptively will be straightforward as to answer the adversary A’s adaptive
receiver corruption queries, the reduction B can simply forward those to its own challenger and
forward back the answers. By A’s admissibility rule, A can never corrupt a receiver that is in
C(π(0), π(1)). Therefore, in the adaptive corruption case, it will still hold that if A is admissible,
then B is admissible too.

We define a sequence of permutations denoted π∗
0, . . . , π

∗
n where π∗

0 = π(0), and for any 0 < i ≤ n,
π∗
i is almost the same as π∗

i−1, except that if i ≤ |C(π(0), π(1))|, then we additionally swap the senders

of the i-th honest receiver in C(π(0), π(1)) denoted v∗i and whoever is receiving from π(1)−1
(v∗i ) in

π∗
i−1 — by construction, the receiver v∗i is swapping senders with another receiver that must lie

within the the set C(π(0), π(1)). Else if i > |C(π(0), π(1))|, then, π∗
i = π∗

i−1. By construction, in π∗
i ,

the first i honest receivers in C(π(0), π(1)) have their correct senders as in π(1), and thus π∗
n = π(1).

We now consider a sequence of hybrid experiments denoted Hybi where i ∈ {0, 1, . . . , n}, in which
a challenger interacts with an adversary A that has the same interface as a NIARStaticb,A adversary,
and moreover, it always corrupts all senders upfront. Namely, A submits n, len,KS ,KR, π

(0), π(1)

upfront where KS is guaranteed to be [n], and then in every time step t, it submits {x(0)u,t , x
(1)
u,t}u∈HS

.
In Hybi, the challenger computes the responses to A as follows:

• It calls the Setup algorithm on the input len, n and the permutation π∗
i (which is uniquely

determined given π(0) and π(1) submitted by A),

• During each time step t, there are no encryption queries to handle as HS = ∅.

By construction, and due to the admissibility rule on A, Hyb0 is the same as NIARStatic0,A, and
Hybn is the same as NIARStatic1,A. It suffices to argue that the adversary’s views in every pair
of adjacent hybrids Hybi and Hybi+1 are computationally indistinguishable. This can be achieved
through a reduction to the static single-inversion security under all-corrupt-senders.

If π∗
i+1 = π∗

i , then by definition, Hybi and Hybi+1 are identically. Henceforth we focus on the
case when π∗

i+1 and π∗
i differ by exactly one inversion. Consider a reduction B which receives

n, len,KS ,KR, π
(0), π(1) from A upfront where KS is guaranteed to be [n], B submits to its own

challenger n, len,KS ,KR, π
∗
i , π

∗
i+1 and passes the responses to A. In every time step t, A submits

no encryption queries as HS = ∅.
If B’s challenger is in world b = 0, then A’s view is identically distributed as in Hybi; else B’s

challenger is in world b = 1, then A’s view is identically distributed as in Hybi+1.
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Finally, by construction, if A respects its admissibility rules, then B respects its admissibility
rules as well. Moreover, as mentioned earlier, B respects the single-inversion constraint. Therefore,
B can translate A’s advantage in distinguishing Hybi and Hybi+1 into its own advantage at breaking
the single-inversion static-corruption security of NIAR (subject to all-corrupting senders).

I.2.3 Removing the All Sender Corruption Restriction

Finally, given a NIAR scheme that is secure with sender-insider protection under an adversary who
corrupts all senders upfront but can adaptively corrupt receivers, we can remove the all-sender-
corruption restriction with the compiler described in F.1.

Lemma I.6 (Removing the all sender corruption restriction). Suppose that NIAR′ satisfies security
with sender-insider protection under an adversary who corrupts all senders upfront but can adaptively
corrupt receivers. Then, the compiled NIAR scheme described in F.1 satisfies full NIAR security
with sender-insider protection (Definition I.1).

Proof. We first define what is a conspicuously honest sender.

Conspicuously honest sender. Consider the experiment NIARFullb,A. Recall that A submits two
permutations π(0) and π(1) upfront. Consider some sender j, and let r0 and r1 be the corresponding
receivers of j in π(0) and π(1), respectively, that is, for b ∈ {0, 1}, π(b)(j) = rb. Suppose during some

time step t, the adversary A submits an encryption query for the plaintext vectors {x(0)u,t , x
(1)
u,t}u∈HS

where HS denotes the so-far honest senders, and it turns out that x
(0)
j,t ̸= x

(1)
j,t , i.e., j is sending

two different messages in the two worlds. Then, at this moment, we know that the sender j can
never be corrupt by A due to the admissibility rules on A. Henceforth, such a sender is called a
conspicuously honest sender. Observe also the corresponding receivers r0 and r1 (which could be
the same) must be conspicuously honest too, by the admissibility rule on A.

Consider the following hybrid experiments indexed by a bit b ∈ {0, 1}.

Experiment Hyb′b. Hyb′b is almost the same as NIARFullb, except with the following modifications:
for all u ∈ [n], the uth PRF key is associated with the uth sender instead of uth receiver. Consequently,

• For all u ∈ [n], eku := (ku, ek
′
u) and rku := (k

π(b)−1
(u)

, rk′u).

• Whenever A submits an encryption query for the plaintext vectors {x(0)u,t , x
(1)
u,t}u∈HS

where HS

denotes the so-far honest senders, the challenger responds with the following ciphertexts for

each u ∈ HS : ctu,t = NIAR′.Enc(ek′u, x
(b)
u,t ⊕ PRF.Eval(ku, t), t).

Experiment Hybb. Hybb is almost the same as Hyb′b, except with the following modifications:

whenever A submits an encryption query for the plaintext vectors {x(0)u,t , x
(1)
u,t}u∈HS

where HS denotes
the so-far honest senders, the challenger responds with the following ciphertexts for each u ∈ HS :

• if u is conspicuously honest, then compute ctu,t = NIAR′.Enc(eku, r, t) for a randomly chosen r
of appropriate length;

• else compute ctu,t = NIAR′.Enc(ek′u, x
(b)
u,t ⊕ PRF.Eval(ku, t), t) honestly.

Claim I.7. For all b ∈ {0, 1}, NIARFullb and Hyb′b are identically distributed.
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Proof. The distribution of all the n PRF keys is identical, hence, one can conclude that the change
from NIARFullb to Hyb′b merely involves change of variable names. Thus, the two distributions are
identical.

Claim I.8. Suppose that the PRF satisfies selective opening security, and let b ∈ {0, 1}. Then,
for the compiled NIAR scheme, it holds that for any non-uniform p.p.t. admissible adversary A, its
views in Hybb and Hyb′b are computationally indistinguishable.

Proof. We prove it for b = 0, since the case when b = 1 is symmetric. Given an efficient NIARFull
adversary A, we will construct an efficient reduction B that breaks the selective-opening security of
the PRF.

• At the beginning B creates n PRF instances with its own challenger C, one corresponding to
each sender. Except for the PRF keys which B does not know at the beginning, B samples all
other terms of the NIAR scheme using the honest algorithms.

• Whenever A makes a corruption query for a receiver u ∈ [n], B corrupts the corresponding PRF

key for the sender π(0)−1
(u) with its own challenger C. It then responds to A with u’s secret key

in the NIAR scheme.

• Whenever A makes a corruption query for a sender u ∈ [n], B corrupts the corresponding PRF
key for the sender u with its own challenger C. It then responds to A with u’s secret key in the
NIAR scheme. Additionally, it returns the random coins consumed by u’s Enc algorithm in all
previous time steps.

• WheneverAmakes an encryption query for a time step t with the challenge plaintexts {x(0)u,t , x
(1)
u,t}u∈HS

,
B computes the answers in the following way: for every u ∈ HS ,

– if u is conspicuously honest, then B submits to C a challenge query for the PRF instance
corresponding to sender u, with the challenge message t, and it obtains the response c∗;

– else it submits an evaluation query to C for the the PRF instance corresponding to sender u,
with challenge message t and obtains the responses c∗;

– B computes ctu,t = NIAR′.Enc(ek′u, c
∗ ⊕ x

(0)
u,t , t).

Clearly, if the selective-opening PRF challenger C always encrypts the real challenge message, then
A’s view is the same as in Hyb′0. Otherwise, if C always returns random strings for challenge queries,
then A’s view is the same as in Hyb0. As mentioned earlier, if a sender is conspicuously honest,
then an admissible adversary A will never corrupt it. Therefore, B is admissible w.r.t. to its own
security game. Summarizing the above, B can translate A’s advantage in distinguishing Hyb′0 and
Hyb0 into its own advantage in breaking the selective-opening PRF security.

Claim I.9. Suppose that the underlying NIAR′ scheme satisfies Definition I.1 subject to an adversary
that corrupts all senders upfront and can adaptively corrupt receivers. Then, for any non-uniform
p.p.t. admissible adversary A, its views in Hyb0 and Hyb1 are computationally indistinguishable.

Proof. In Hybb where b ∈ {0, 1}, in each time step, to answer the adversary A’s encryption query

{x(0)u,t , x
(1)
u,t}u∈HS

for the so-far honest set HS , the challenger does the following: for every u ∈ HS ,
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• either call NIAR′.Enc(eku, x
(b)
u,t⊕PRF.Eval(ku, t), t) to encrypt the inner-message x

(b)
u,t⊕PRF.Eval(ku, t),

where ku denotes the PRF key of the sender u, which is also receiver π(b)(u)’s PRF key.

• or call NIAR′.Enc(eku, r, t) to encrypt some random inner-message r.

If A respects its admissibilty rules, then for each sender u, then the following must hold:

1. For every eventually corrupt sender u, it must be that for every time step t, the inner-messages

x
(0)
u,t ⊕PRF.Eval(ku, t), and x

(1)
u,t ⊕PRF.Eval(ku, t) (to be passed to NIAR′.Enc in Hyb0 and Hyb1

respectively) are the same;

2. For every eventually honest sender u,

• For any t before u becomes conspicuously honest, the inner-messages x
(0)
u,t ⊕ PRF.Eval(ku, t)

and x
(1)
u,t ⊕ PRF.Eval(ku, t) are the same;

• For any t during or after the round in which u becomes conspicuously honest, the inner-
messages to be passed to NIAR′.Enc in Hyb0 and Hyb1 are both random inner-messages.

Now, imagine that the challenger has some randomness tape Γ[·, ·] which can be viewed as a two
dimensional array. The randomness tape is sampled at the beginning of the experiment Hybb where
b ∈ {0, 1}. Later, whenever the challenger needs to sample a random inner-message for some sender
u, it will read the random coins Γ[u, t] off the randomness tape where t denotes the current time.

It suffices to prove that conditioned on any fixed choice of the randomness tape Γ, A’s views
in Hyb0 and Hyb1 are computationally indistinguishable. This can be accomplished through a
straightforward reduction to the security of the underlying NIAR′ scheme. Basically, consider a
reduction B that interacts with its own challenger as well as A.

• B passes the terms (n, len, π(0), π(1)) sent by A directly to its own challenger, and gets back tk.
It passes tk to A.

• Further, B chooses the PRF key ku for every sender u.

• B corrupts all senders upfront with its own challenger, and receives {ek′u}u∈[n].

• Whenever A submits an encryption query {x(0)u,t , x
(1)
u,t}u∈HS

during some time step t, B can’t query
its challenger as it has corrupted all the senders. So, it perfectly simulates the ciphertexts for all
u ∈ HS without knowing the challenger’s choice b as follows:

– If u is not conspicuously honest, then, x
(0)
u,t = x

(1)
u,t . Therefore, the two inner-messages

x
(0)
u,t⊕PRF.Eval(ku, t) = x

(1)
u,t⊕PRF.Eval(ku, t) for b = 0 and b = 1 are the same. Therefore,

B can perfectly simulate the ciphertext as ctu,t = NIAR′.Enc(ek′u, x
(0)
u,t ⊕ PRF.Eval(ku, t), t).

(Note that here the PRF keys correspond to senders and not receivers. Consequently, B can
simulate this step perfectly. If the PRF keys were associated with receivers, then, B would
not know which of the two PRF keys to use at this step.)

– If u is conspicuously honest, then, the two inner-messages for NIAR′.Enc are both random
strings. Therefore, B reads the random coins r = Γ[u, t] from its randomness tape Γ and
perfectly simulates the ciphertext as ctu,t = NIAR′.Enc(ek′u, r, t).

B sends the ciphertexts {ctu,t}u∈HS
computed above to A.

• Whenever A makes a corruption query for some sender u, B sends to A its key (ku, ek
′
u).
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• Whenever A makes a corruption query for some receiver u, B forwards the query to its own
challenger and passes the answer back to A. Moreover, it reveals the corresponding player’s PRF
key to A. If A is admissible, then a corrupt receiver must have the same sender in both π(0) and
π(1), so B can always identify a unique PRF key to return to A.

• B outputs whatever A outputs.

Now, if B’s challenger is in world b = 0, then A’s view is identically distributed as Hyb0. Else if B’s
challenger is in world b = 1, then A’s view is identically distributed as Hyb1. Further, for a fixed
randomness tape, B is admissible as long as A is admissible.

Completing the proof of Lemma I.6. Combining Claims I.7 to I.9, we have that NIARFull0 ≡
Hyb′0 ≈c Hyb0 ≈c Hyb1 ≈c Hyb

′
1 ≡ NIARFull1 where ≈c denotes computational indistinguishability

and ≡ denotes distributionally equivalent. This completes the proof of Lemma I.6.

I.2.4 Completing the Proof of Theorem I.3

Theorem I.3 follows directly by combining Lemmas I.4 to I.6.
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