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Abstract

We revisit decentralized multi-authority attribute-based encryption (MA-ABE) through the
lens of fully adaptive security – the most realistic setting in which an adversary can decide
on-the-fly which users and which attribute authorities to corrupt. Previous constructions
either tolerated only static authority corruption or relied on highly complex “dual system with
dual-subsystems” proof technique that inflated ciphertexts and keys.

Our first contribution is a streamlined security analysis showing – perhaps surprisingly – that
the classic Lewko–Waters MA-ABE scheme [EUROCRYPT 2011] already achieves full adaptive
security, provided its design is carefully reinterpreted and, more crucially, its security proof is
re-orchestrated to conclude with an information-theoretic hybrid in place of the original target-
group-based computational step. By dispensing with dual subsystems and target-group-based
assumptions, we achieve a significantly simpler and tighter security proof along with a more
lightweight implementation. Our construction reduces ciphertext size by 33 percent, shrinks user
secret keys by 66 percent, and requires 50 percent fewer pairing operations during decryption –
all while continuing to support arbitrary collusions of users and authorities. These improvements
mark a notable advance over the state-of-the-art fully adaptive decentralized MA-ABE scheme of
Datta et al. [EUROCRYPT 2023]. We instantiate the scheme in both composite-order bilinear
groups under standard subgroup-decision assumptions and in asymmetric prime-order bilinear
groups under the Matrix-Diffie–Hellman assumption. We further show how the Kowalczyk–Wee
attribute-reuse technique [EUROCRYPT 2019] seamlessly lifts our construction from “one-use”
boolean span programs (BSP) to “multi-use” policies computable in NC1, resulting in a similarly
optimized construction over the state-of-the-art by Chen et al. [ASIACRYPT 2023].

Going beyond the Boolean world, we present the first MA-ABE construction for arithmetic
span program (ASP) access policies, capturing a richer class of Boolean, arithmetic, and
combinatorial computations. This advancement also enables improved concrete efficiency by
allowing attributes to be handled directly as field elements, thereby eliminating the overhead
of converting arithmetic computations into Boolean representations. The construction – again
presented in composite and prime orders – retains decentralization and adaptive user-key security,
and highlights inherent barriers to handling corrupted authorities in the arithmetic setting.
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1 Introduction

Attribute-Based Encryption (ABE) [SW05,GPSW06] provides fine-grained control over encrypted
data access by associating decryption privileges directly with user credentials (attributes). Such
schemes enable authorized users possessing appropriate attributes to decrypt specific messages
without revealing unintended information. Over the years, designing robust and practical ABE
schemes has been a vibrant research area, leading to numerous advances that balance critical trade-
offs among expressiveness, efficiency, security, and cryptographic assumptions. [BSW07,OSW07,
Wat09,LOS+10,LW10,OT10,AFV11,LW11b,Wat11,LW12,OT12,Wat12,Boy13,GGH+13,GVW13,
Att14,BGG+14,Wee14,CGW15,Att16,BV16,ABGW17,GKW17,CGKW18,Att19,AMY19,GWW19,
KW19,Tsa19,KW20,AY20,BV20,GW20,LL20b,LL20a,GW20,AT20,Wee21a,Wee21b,Wee22,RW22,
AYY22,LLL22,CW23,ARYY23,JLL23,HLL23,CW24,Wee24,DHM+24,AKY24,HLL24,WW24,
Wee25,CW25]. Alongside these exciting advances, ABE has seen growing adoption in practical
applications [GPSW06,ETS18,VAH23,LVV+23] and standardization efforts by NIST [PB23] and
ETSI [ETS18].

Multi-Authority Attribute-Based Encryption (MA-ABE). Traditional ABE schemes men-
tioned above rely on a single central authority possessing a master secret key to issue attribute-based
decryption keys. To address the inherent limitations of centralized trust – a critical barrier to
large-scale, real-world deployment – Chase [Cha07] introduced the concept of Multi-Authority
Attribute-Based Encryption (MA-ABE), which enables multiple independent authorities to concur-
rently manage disjoint sets of attributes. Each authority issues secret keys to users for attributes
under its individual control, without requiring coordination or interaction with other authorities.
Consequently, a user holding attributes from multiple authorities can decrypt ciphertexts associated
with an access policy by seamlessly combining keys obtained from the relevant attribute authorities.

Fully Adaptive Security for MA-ABE. Similar to standard ABE, Multi-Authority ABE
naturally demands collusion resistance against unauthorized users; however, MA-ABE introduces
an additional challenge: the possibility that some attribute authorities themselves may become
corrupted and collude with malicious users. Addressing this critical security aspect, prior works have
formalized various corruption models, typically allowing adaptive corruption of users’ secret keys
while limiting authorities to static corruption—chosen by an adversary at the outset of the security
game. Given the inherently decentralized and dynamic nature of MA-ABE, such assumptions seem
overly restrictive and unrealistic, as they imply that adversaries must commit upfront to corrupting
specific authorities even before observing any issued keys or interactions. Also, in practical scenarios,
it is natural to assume authorities may join or leave dynamically over time. Acknowledging these
considerations, recent research has advanced toward a more robust and realistic notion known as
the fully adaptive security model, where both attribute authorities and user keys can be corrupted
adaptively at any point during the security game. This strengthened security definition—which
captures realistic threats and dynamic environments—is the central focus of this paper.

The State-of-the-Art in MA-ABE. Despite substantial progress in designing expressive and
efficient single-authority ABE schemes with strong security guarantees, extending these desirable
features to the multi-authority setting remains a challenging and delicate task. As a result,
only a handful of MA-ABE constructions exist, and all suffer from limitations – whether in
terms of security, efficiency, or overall complexity. After several early proposals with notable
shortcomings [Cha07,LCLS08,MKE09a,CC09,MKE09b], Lewko and Waters [LW11a] introduced the
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first truly decentralized MA-ABE scheme. In their construction, any party can act as an independent
authority by simply publishing a public key and issuing secret keys to users for attributes under its
control—without requiring any global coordination beyond an initial trusted setup. Authorities
operate independently, need not be aware of each other’s existence, and can join the system at
any time, with no bound on the total number of authorities over the system’s lifetime. Their
scheme supports all access policies expressible as monotone boolean span programs (BSP) [Bei96a],
offering expressive policy enforcement in a fully decentralized environment. The security of the
scheme is established in the random oracle model using the powerful dual system encryption
framework [Wat09,LW10,LOS+10], under subgroup-decision style assumptions in composite-order
bilinear groups.

Following the foundational work of Lewko and Waters [LW11a], a number of extensions and
refinements to decentralized MA-ABE was proposed. Okamoto and Takashima [OT20a] presented a
construction over prime-order bilinear groups under the Decision Linear (DLIN) assumption [BBS04].
Subsequent works [RW15,AG21,Ven23, dlPVA23] improved the efficiency of pairing-based MA-
ABE schemes, but at the expense of weaker security guarantees and/or reliance on less standard
q-type assumptions or the Generic Group Model (GGM). Similarly, in the lattice setting, existing
decentralized MA-ABE constructions [DKW21,WWW22, CLW25] continue to face limitations
in expressiveness, offer weaker security models, and often rely on nonstandard knowledge-based
assumptions.

Despite significant progress, all MA-ABE schemes discussed thus far fall short of supporting adap-
tive corruption of attribute authorities. In fact, achieving fully adaptive security in a decentralized
MA-ABE setting remained an open challenge for over a decade. Strikingly, this problem represents
a rare instance where standard complexity leveraging or guessing-style arguments fail—even when
one tolerates sub-exponential security loss [SW05,BB11,JW16,JKK+17,KW20]. The issue is that
when applied in this context, such arguments incur an exponential security loss proportional to the
maximum number of authorities involved in a ciphertext. Thus, such techniques require fixing this
maximum number in advance and adjusting the security parameter accordingly, severely limiting
the practicality and flexibility of the resulting schemes.

Breaking this long-standing barrier, Datta et al. [DKW23] were the first to construct a fully
adaptively secure decentralized MA-ABE scheme for access policies expressed as monotone BSPs.
Their construction supports an arbitrary polynomial number of adaptive user key and authority
corruption queries—marking a major milestone in the field. They presented two variants of their
scheme: one based on composite-order bilinear groups, and a more efficient instantiation over
prime-order bilinear groups [Fre10, Gui13, dlPVA22], under the Subgroup Decision and Matrix
Diffie-Hellman (MDDH) assumptions, respectively. Despite this progress, their scheme inherits a
key limitation from earlier MA-ABE constructions with static authority corruption under static
computational assumptions —namely, the “one-use” restriction, which permits each attribute to
appear at most once in any access policy. Chen et al. [CCG+23] addressed this by extending
the prime-order scheme of [DKW23] to support multi-use of attributes in the context of NC1
access policies. Their enhancement integrates the celebrated multi-use technique of Kowalczyk
and Wee [KW19], originally developed for centralized ABE systems, and retains security under
the MDDH assumption. More recently, Garg et al. [GGL24] constructed a fully adaptively secure
decentralized MA-ABE scheme for access policies representable by polynomial-depth monotone
circuits, albeit with support for only bounded collusion.

Motivation. This work revisits the construction and proof techniques of Datta et al. [DKW23]
with the goal of developing a fully adaptive decentralized MA-ABE scheme that supports arbitrary
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collusions of users and attribute authorities, while offering improved efficiency and a significantly
simpler security analysis. Although the schemes of Datta et al. [DKW23] and its follow-up by Chen
et al. [CCG+23] remain the state-of-the-art in achieving fully adaptive security against arbitrary
collusions under standard static assumptions, their security proofs are notably intricate. In particular,
they rely on a highly sophisticated extension of the dual system encryption technique, termed the
“Dual System with Dual Sub-systems”. This approach constructs two parallel systems—a “main
system” and a “shadow system”—and carefully injects entropy into the shadow system, which is
then gradually transferred to the main system through a delicate sequence of hybrid transitions,
involving both computational and information-theoretic arguments. To motivate this complexity,
Datta et al. [DKW23] argued in their technical overview (Section 2.3) that earlier approaches
based on the framework of Lewko and Waters [LW11a], and its many extensions, are fundamentally
inadequate for handling adaptive authority corruptions. The key challenge lies in the structure of
the authority master secret keys: in [LW11a], these keys are composed of exponents, which cannot
be directly embedded into dual system proofs, as such proofs operate over group elements and rely
on subgroup decision-style assumptions for computational indistinguishability. To overcome this
limitation, Datta et al. [DKW23] introduced a pivotal modification: they replaced a portion of the
authority master secret keys with a global public group element that is independent of any specific
authority. This enabled the inclusion of corrupted authorities within the scope of the dual system
proof framework. However, this innovation also introduced new technical hurdles, necessitating the
development of their elaborate dual system with dual sub-system methodology to complete the
proof.

While the techniques developed in [DKW23] were a major breakthrough—resolving a long-
standing open problem—there has been surprisingly little follow-up work exploring whether simpler
or more efficient approaches could achieve fully adaptive security. In particular, it remains unclear
whether the use of two parallel subsystems—a central component of their proof technique—is truly
necessary for supporting fully adaptive security under arbitrary collusions. Could a single-system
design suffice instead? If so, this would yield not only a conceptually simplified and tighter security
analysis, but also an immediate efficiency gain in both computation and communication complexity,
while preserving the same strong security guarantees.

A second motivation of our work is to initiate the study of MA-ABE schemes where access
policies are expressed in the arithmetic model of computation. To date, all existing MA-ABE
constructions encode access policies using the Boolean model, and no scheme has been designed
specifically for arithmetic representations. As a natural first step, we focus on access policies
realizable by Arithmetic Span Programs (ASPs)—a powerful abstraction that captures a wide
range of computations. ASPs can naturally represent various arithmetic operations such as sparse
polynomial evaluation, mean, and variance, as well as combinatorial tasks like string matching, finite
automata, and decision trees. Importantly, Boolean/arithmetic formulas, Boolean span programs,
and Boolean/arithmetic branching programs can all be efficiently converted into ASPs with only
polynomial blow-up [IW14a], making ASPs a strictly more expressive model for encoding policies.
While in principle one could simulate arithmetic relations using general MA-ABE schemes for Boolean
circuits [GGL24,CLW25] by translating each field operation into an equivalent Boolean sub-circuit,
this approach is not scalable. While providing reasonable asymptotic efficiency in theory (e.g., via
fast integer multiplication techniques [Für07]), the concrete overhead of this approach is enormous.
Moreover, there are practical settings where attribute values must be treated as atomic field elements,
rather than decomposed into bits, rendering such Boolean encodings inapplicable. Note that in
view of similar efficiency and applicability issues with boolean computations, arithmetic variants of
various important cryptographic primitives have already been considered in the last few years both
within attribute-based cryptography [AIK11,PHGR13,KOS16] and beyond [DOT19,LL20a,LL20b].
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Our work builds on this direction by asking: Can we design a decentralized MA-ABE scheme that
natively supports access policies defined by ASPs, avoiding the inefficiencies of Boolean encodings?

Our Results

We present the following contributions in this work:

1. Fully Adaptive Decentralized MA-ABE with Simpler Proof and Improved Efficiency.
We construct a fully adaptively secure decentralized MA-ABE scheme for monotone BSP access
policies that resists arbitrary collusions of users and attribute authorities. Our scheme achieves
significant efficiency gains over the current state-of-the-art constructions [DKW23,CCG+23], while
also offering a substantially simpler security proof. In particular, our analysis avoids the intricate
dual system with dual-subsystem framework introduced in [DKW23], making the security argument
more streamlined and transparent. As in [DKW23], we present two instantiations of our construction:
one in composite-order bilinear groups (outlined in the Technical Overview, Section 2.4) and another
in asymmetric prime-order bilinear groups (detailed formally in Section 4). The former relies on the
Subgroup Decision assumption, while the latter is based on the MDDH assumption. Our prime-order
scheme is derived via the composite to prime order translation technique of Chen et al. [CGKW18],
which builds on prime-order conversion frameworks developed in [CGW15,GDCC16]. Along the
way, we further optimize the required subspace dimensions to achieve improved performance.

At a technical level, our approach fundamentally differs from [DKW23]. Rather than embedding
the master secret keys of corrupted authorities into the dual system framework—as pursued
in [DKW23]—we keep these keys entirely outside the dual system machinery. Our main contribution
lies in carefully revisiting and restructuring the original Lewko–Waters [LW11a] security proof with
only minor adjustments to their scheme architecture. Our key insight is that the primary limitation
of [LW11a]—their reliance on a final computational transition based on an assumption analogous to
Decisional Bilinear Diffie-Hellman (DBDH) [BF01], which inherently demands static knowledge of
corrupted authorities—can be overcome by replacing this step with a purely information-theoretic
transition. However, applying this idea naively fails due to excessive leakage of honest authorities’
master key information in their existing hybrid argument. We resolve this by carefully restructuring
their security analysis to strictly limit information leakage about honest authority master keys. This
critical refinement yields a simpler and tighter fully adaptive security proof without significantly
modifying the original [LW11a] construction. Please refer to Sections 2.2 to 2.4 below for details.

This yields a surprising and insightful discovery: despite their deep expertise in dual system
techniques, neither the authors of [LW11a] nor [DKW23] identified that the construction in [LW11a]
could, with a restructured proof, be elevated to support adaptive authority corruptions. In particular,
Datta et al. explicitly argued in their technical overview (Section 2.3) that incorporating the authority
master secret keys into the dual system framework was essential for achieving fully adaptive security
– a barrier that motivated the development of their complex dual system with dual sub-systems
methodology. Our work shows that this perceived necessity can, in fact, be circumvented entirely.

Furthermore, since our security proof does not rely on target-group-based computational as-
sumptions, we are able to relocate all target group components from the original Lewko–Waters
construction [LW11a]—both in the ciphertext and the authority public keys—into the first source
group, which is significantly more compact and efficient. As we demonstrate in Table 1, our MA-
ABE scheme offers substantial improvements in both size and performance over the existing fully
adaptive constructions that support arbitrary collusions of users and authorities [DKW23,CCG+23].
Specifically, compared to these prior schemes, our construction achieves 33% reduction in the size
of authority master secret keys and ciphertexts, and a 66% reduction in user secret key size. On
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the computational side, encryption requires no pairings, and decryption involves 50% fewer pairing
operations.

Since our construction closely follows [LW11a], it inherits their one-use restriction, allowing
each attribute to appear at most once per access policy. To overcome this and support multi-use
of attributes, we adopt the technique of Kowalczyk and Wee [KW19] – as applied by Chen et
al. [CCG+23] – and integrate it with our prime-order MA-ABE scheme. This results in a fully
adaptively secure decentralized MA-ABE scheme for NC1 access policies that supports attribute reuse
while achieving the same efficiency gain over [CCG+23] as our single-use scheme does over [DKW23].

2. Decentralized MA-ABE for Arithmetic Span Programs (ASPs). Our second con-
tribution is the first decentralized MA-ABE scheme for Arithmetic Span Programs (ASPs). We
present constructions in both the composite-order bilinear group setting (outlined in the Technical
Overview, Section 2.5) and the prime-order setting (Section 6), with security proven under the
Subgroup Decision and MDDH assumptions, respectively. The security analysis builds directly
upon our proof framework developed for the BSP case. Similar to our BSP scheme, our ASP-based
construction supports an unbounded number of attribute authorities, each capable of independently
joining the system at any time and also tolerates adaptive corruption of arbitrarily many user secret
keys. However, our security proof holds under the assumption that no authority appearing in a
ciphertext is corrupted.

While the inability to ensure security for ciphertexts involving corrupted authorities may seem
unsatisfying, we argue in Section 2.5 that this limitation reflects fundamental barriers inherent to
the problem. At a high level, security for access structures represented by ASPs is guaranteed only
when a user possesses secret keys for at most one value per attribute. However, in the decentralized
MA-ABE setting, if an adversary corrupts an attribute authority, it gains the ability to issue
keys for multiple values of the same attribute to the same user. This capability undermines the
security of ASPs and enables unauthorized decryption—breaking the intended security guarantees.
This limitation is closely related to why MA-ABE schemes cannot directly support access policies
realizable by non-monotone linear secret sharing scheme (LSSS) [DKW21]. The only viable approach
in that case is to first reduce the non-monotone LSSS to an equivalent monotone form and then
apply a secure MA-ABE construction for monotone LSSS access policies [OT20a,DKW21].

Additionally, we provide a generic workaround that allows the authorities related to the challenge
ciphertext to be corrupted, but the cost of weakening the functionality of the scheme: decryptors
must have keys from all authorities featured in a ciphertext policy in order to decrypt the ciphertext.
Security holds as long as either the adversary corrupts no authority appearing in the challenge
ciphertext policy or for each GID queried, there exists an honest authority appearing in the challenge
ciphertext policy who did not issue any secret key. Thus, the modified construction achieves the
security model of Cini et al. [CLW25], but unlike [CLW25], our approach does not require a very-
selective security model or bounds on number of authorities, and it supports fully adaptive queries,
including corruption. The details of this modification can be found in Sections 2.6 and 7.

2 Technical Overview

In this section, we present the core technical ideas behind our work. We begin by explaining how
we transform the construction and the security analysis of the classic Lewko–Waters MA-ABE
scheme [LW11a] to achieve fully adaptive security—supporting both adaptive user key queries and
adaptive corruption of attribute authorities. As discussed in the Introduction, this refinement leads

1Our MA-ABE for ASP satisfies full adaptive security with Type 1 restriction as defined in Definition D.2
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Table 1: Efficiency Comparison: Comparison of fully adaptively secure decentralized MA-ABE
in prime order groups. All schemes are instantiated from k-MDDH assumption in prime-order
asymmetric pairing groups, with k = 1 (that is, Symmetric External Diffie-Hellman (SXDH)

assumption). n and ℓ denote the number of rows and columns in the policy matrix M (and also
matrix N in case of ASP) respectively.

(a) Communication Comparision: We omit the size of c0 and access policy in |ct|.

Scheme |mski| |pki| |ski,GID| |ct| Many-
use?

Policy class

DKW23
[DKW23]

18|Zq| 6|G1| 6|G2| 12n|G1| No
monotone
BSP

Section 4 12|Zq| 6|G1| 2|G2| 8n|G1| No
monotone
BSP

Section 61 24|Zq| 12|G1| 2|G2| 14n|G1| No ASP

CCG+23
[CCG+23]

18|Zq| 6|G1| 6|G2| 12n|G1| Yes NC1

Section 5 12|Zq| 6|G1| 2|G2| 8n|G1| Yes NC1

(b) Computation Comparison: S denotes the set of attributes with respect to which decryption is
performed. For each algorithm, we specify two values: #exponentiations,#pairings. For #exponentiations,

(count)i denotes the count for group Gi where i ∈ {1, 2, T}.

Scheme AuthSetup KGen Enc Dec

DKW23
[DKW23]

(18)1, 0 (18)2, 0 (6nℓ+12n+6ℓ−3)1 + (3)T , 3 (|S|)T , 12|S|

Section 4 (12)1, 0 (7)2, 0 (14n)1 + (1)T , 0 (3|S|)1 + (|S|)T , 6|S|
Section 6 (24)1, 0 (7)2, 0 (26n)1 + (1)T , 0 (9|S|)1 + (|S|)T , 6|S|
CCG+23
[CCG+23]

(18)1, 0 (18)2, 0 (18n)1 + (6)T , 3 (|S|)T , 12|S|

Section 5 (12)1, 0 (7)2, 0 (14n)1 + (1)T , 0 (3|S|)1 + (|S|)T , 6|S|

to a significantly efficient construction for fully adaptively secure MA-ABE schemes for monotone
BSP access policies, improving upon the constructions in [DKW23,LW11a,CCG+23]. We then
briefly sketch how we use the technique of Kowalczyk and Wee [KW20] to extend our scheme to
support multi-use of attributes within access policies.

Finally, we outline our decentralized MA-ABE construction for ASPs and elaborate on the
inherent barriers to supporting authority corruptions in this more expressive arithmetic setting.

2.1 Background on MA-ABE and Fully Adaptive Security

Our MA-ABE schemes—like all known MA-ABE constructions—assume that each user in the
system is associated with a unique global identifier GID, drawn from a universe of global identifiers
GID ⊂ {0, 1}∗. For simplicity of exposition, we assume in this paper (without loss of generality)
that each attribute is managed by a distinct authority, allowing us to use the terms “authority”
and “attribute” interchangeably. (We note that this restriction can be relaxed to support an a
priori bounded number of attributes per authority [LW11a].) We denote the universe of attribute
authorities by AU .

Let us briefly recall the syntax of a decentralized MA-ABE scheme. Such a scheme consists of
five core algorithms: GlobalSetup,AuthSetup,KGen,Enc,Dec.

• The GlobalSetup procedure takes as input the security parameter (in unary) and outputs global
public parameters gp. All subsequent procedures rely on gp, though we may omit them in the
notation when clear from context.
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• The AuthSetup procedure can be invoked by any authority u ∈ AU , generating a corresponding
public-secret key pair (pku, sku).

• Using sku , the authority can issue a user-specific secret key skGID,u for a user identified by global
identifier GID ∈ GID

• At any point, using the public keys {pku} of selected authorities, anyone can encrypt a message
msg under an access policy (A, ρ) to obtain a ciphertext ct.

• A user possessing a collection of secret keys {skGID,u} corresponding to a consistent GID can
decrypt a ciphertext ct if and only if the set of attributes associated with their keys satisfies the
access policy embedded in the ciphertext.

In constructions built within the random oracle model2—including ours —a public hash function
H1 is assumed. This function maps global identifiers GID to an appropriate domain and is specified
by GlobalSetup. In the security analysis, H1 is modeled as a random oracle.

Fully Adaptive Security. Just like standard ABE, the security of an MA-ABE scheme demands
collusion resistance, that is, no group of colluding users, none of whom is individually authorized to
decrypt a ciphertext, should be able to decrypt the same when they pull their secret key components
together. However, in case of MA-ABE, it is further required that collusion resistance should
hold even if some of the authorities collude with the adversarial users and thereby those users can
freely obtain secret keys corresponding to the attributes controlled by those corrupt authorities.
Decentralized MA-ABE further allows the public and secret keys of the corrupt authorities to
be generated in a malicious way and still needs collusion resistance. This is crucial since, in a
decentralized MA-ABE scheme, anyone is allowed to act as an attribute authority by generating its
public and secret keys locally and independently of everyone else in the system. The fully adaptive
security is roughly defined by the following game:
Global Setup: The challenger generates global public parameters.
Query Phase 1: The attacker is allowed to adaptively make a polynomial number of queries of the
following form: (i) Authority Setup Query : the challenger runs AuthSetup to create a public/master
key pair for an authority specified by the adversary, (ii) Secret Key Query : the challenger runs
KGen to create a secret key for a given attribute. (iii) Authority Master Key Query : the challenger
provides the attacker the master secret key of an authority of the adversary’s choice.
Challenge Phase: The adversary submits two messages msg0,msg1, and an access structure A
along with a set of public keys of authorities involved in the access structure. It gets back from
the challenger an encryption of one of the messages (chosen at random) with respect to the access
structure. It is crucial that the adversary does not hold enough secret keys/authority master keys
to decrypt a message that is encrypted with respect to the access structure.
Query Phase 2: Same as in Query Phase 1 (while making sure that the constraint from the
challenge phase is not violated).
Guess: The attacker guesses which message was encrypted.

The Lewko-Waters MA-ABE schemes [LW11a] consider a much weaker definition where the
adversary must commit during the Global Setup phase on the set of authorities in the system as
well as on the subset of corrupted authorities. Already at that point, the private/public key pairs
of all non-corrupt authorities are created by the challenger and the public keys are given to the

2In fact, all known MA-ABE schemes except [WWW22] are built in the random oracle model. While [WWW22]
is constructed without random oracles, it relies on the evasive LWE assumption, which is a strong, knowledge-type
assumption whose variants have recently come under cryptanalytic scrutiny [BÜW24,HJL25,AMYY25].
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attacker. (That is, during Query Phase I and II, only queries of form: (ii) Secret Key Query are
allowed.) The fully adaptive security definition [DKW23,CCG+23] is much more realistic given the
distributed nature of MA-ABE.

2.2 The Lewko–Waters Construction and its Limitations in supporting Adaptive
Authority Corruption

As with any centralized ABE scheme, a central challenge in MA-ABE is achieving collusion resistance.
In standard ABE, this is typically accomplished by having a central authority—who knows the master
secret key—generate user keys in such a way that the individual key components (corresponding
to different attributes) are “tied together” using fresh randomness unique to each user. This
user-specific randomization ensures that the components are compatible only within a given user’s
key, and cannot be combined across users to violate access policies. In the multi-authority setting,
however, we aim to achieve two goals simultaneously: (i) autonomous key generation, where each
authority independently issues keys, and (ii) collusion resistance, ensuring that unauthorized users
cannot pool their keys to decrypt unauthorized ciphertexts.

This autonomy requirement fundamentally limits the applicability of traditional randomization
techniques—since there is no central party coordinating the key components. In decentralized
MA-ABE, each key component may originate from a distinct authority, with no shared state or even
awareness of one another. To address this, all existing decentralized MA-ABE schemes (with the
sole exception of [WWW22]) use the output of a public hash function applied to the user’s global
identifier GID as a source of deterministic “shared randomness” across authorities. This ensures that
all key components issued to a given user are cryptographically tied together, while maintaining full
decentralization. We now briefly describe the Lewko–Waters MA-ABE scheme for monontone BSP
access policies and the core challenges it faces in supporting adaptive corruption of authorities.

The Lewko-Waters MA-ABE scheme is described as follows:

• gp = (N,G,GT , e, g1,H1 : {0, 1}∗ → G) where (N = p1p2p3,G,GT , e) a composite-order bilinear
group with Gp1 ,Gp2 ,Gp3 being the subgroups of G of order p1, p2, p3 respectively and g1 ∈ Gp1

• pku = (e(g1, g1)
αu , gyu1 ), sku = (αu, yu) with αu, yu ← ZN for all u ∈ AU

• ct = (C0, {C1,x, C2,x, C3,x}x∈[ℓ]), where C0 = msg·e(g1, g1)s, for all x ∈ [ℓ]: C1,x = e(g1, g1)
λx+αρ(x)

rx ,

C2,x = grx1 , C3,x = g
ωx+yρ(x)rx

1 where (M, ρ) is the BSP access policy with M ∈ Zℓ×d
N , ρ : [ℓ]→ AU

is injective, λx = Mx · v, ωx = Mx · w, v = (s, v2, . . . , vd), w = (0, w2, . . . , wd), where
v2, . . . vd, w2, . . . wd are uniform random in Zq.

• skGID,u = gαu
1 H1(GID)

yu

The security proof of the Lewko–Waters construction [LW11a] relies on the dual system encryption
technique originally introduced by Waters [Wat09]. In this framework, ciphertexts and keys can exist
in either normal form or various semi-functional forms. Semi-functional components are not part of
the actual system—they are introduced solely for the purpose of the security proof. The core idea is
as follows: a normal key can correctly decrypt both normal and semi-functional ciphertexts, and
similarly, a normal ciphertext can be decrypted by either normal or semi-functional keys. However,
when a semi-functional key is used to decrypt a semi-functional ciphertext, decryption fails. This
asymmetry is leveraged to gradually transition from the real world to a simulated one in which the
adversary learns no useful information. Security is established via a sequence of indistinguishable
hybrid games. The first game corresponds to the real security game, where both the ciphertext and
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all user keys are in normal form. In the second game, the ciphertext is switched to semi-functional
form while keeping all keys normal. Then, for an adversary making q secret key queries, the proof
proceeds through q hybrids: in the kth game, the first k keys are semi-functional, and the remaining
are normal. In the final game—where all keys and the challenge ciphertext are semi-functional—none
of the keys are useful for decrypting the challenge ciphertext, thereby ensuring security.

The security proof of Lewko and Waters [LW11a] follows the dual system encryption framework.
In the penultimate step of the proof, all user secret keys and the challenge ciphertext are in semi-
functional form. The final hybrid transition switches the semi-functional challenge ciphertext from
an encryption of the original message to an encryption of a random message, thereby completing
the proof of security. To argue the indistinguishability of this transition, the authors rely on a
target-group-based computational assumption—specifically, Assumption 4 in [LW11a], which is
a variant of the DBDH assumption. More precisely, they simulate the masking secret s as abc,
where a, b, c ← ZN are random exponents and unknown to the simulator. To accomplish this
simulation without knowing the exponents, the reduction performs two steps depending on whether
the authority associated with the challenge access policy is corrupt or honest. First, the reduction
disables the effect of the rows in the challenge BSP access policy matrix that correspond to corrupted
authorities by selecting a vector that is orthogonal to those rows. Such a vector is guaranteed to
exist, since the set of corrupted authorities must, by definition, be unauthorized. This orthogonality
allows the simulator to effectively “ignore” the need for master secret keys corresponding to the
corrupted authorities. For the honest authorities, the situation is even more delicate. The reduction
must embed elements of the underlying hard problem instance directly into their public keys. More
precisely, the reduction has to embed the term ab within the master key components α of honest
authorities, so that it can simulate the ciphertext components associated with honest authorities
containing the shares of s by canceling out ab in the exponent. Crucially, this embedding must
be performed before any authority is created. Otherwise, if the reduction embeds the unknown
exponents from the challenge problem instance into the master secret key of an authority that is
later corrupted, it will be unable to provide that master secret key to the adversary – breaking the
simulation. These two technical dependencies – (1) selecting an orthogonal vector for unauthorized
rows and (2) embedding problem instances into the public keys of honest authorities – require the
reduction to know in advance which authorities will be corrupted. As a result, the security proof
can only support static corruption of authorities.

2.3 Our Approach for Supporting Adaptive Authority Corruption

We begin with the same high-level objective as Datta et al. [DKW23]: avoiding the need to simulate
authority master keys based on instances of computational hardness assumptions. In their work,
Datta et al. achieved this by adhering to a critical design principle throughout their security
proof – ensuring that all transitions involving game conditions or information about corrupted
authorities are handled via information-theoretic arguments. In particular, transitions between such
adjacent hybrids are shown to be statistically close by implicitly redefining all relevant components,
including the authority master secret keys, without invoking computational assumptions. Our first
step is to examine why this information-theoretic paradigm could not be directly applied to the
original Lewko–Waters construction [LW11a], and why the invocation of the highly sophisticated
“dual system with dual subsystems” framework was deemed necessary by [DKW23]. Upon careful
analysis, we observe that the Lewko–Waters proof already adheres to this theme for the most part,
except in the final step, where they rely on a computational transition based on a target-group
hardness assumption as explained above. A natural question that arises at this point is whether
the computational transition in [LW11a] can be replaced with a purely information-theoretic step,
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rather than undertaking the more elaborate task of bringing the authority master keys into the fold
of dual system encryption, as pursued by [DKW23]. Notably, this alternative approach leads to a
significantly simpler and tighter security analysis.

However, due to the specific structure of the Lewko–Waters scheme [LW11a] and its associ-
ated hybrid transitions, we observe that the final hybrid cannot be directly transformed into an
information-theoretic transition. Roughly speaking, just prior to the final hybrid step, the challenge
ciphertext and all user secret keys are in semi-functional form. In this form, both the ciphertext
and secret key components contain segments in the Gp3 subgroup. Notably, the Gp3 portions of the
ciphertext components {C3,x} do not encode secret shares of zero, but instead encode shares of a
random, independent value. Our objective in the final information-theoretic step is to transport
the entropy present in the {C3,x} components into the Gp3 segments of the {C1,x} components,
thereby randomizing the shares of the masking secret s. For corrupted authorities, this can be
achieved by leveraging an orthogonal vector – an information-theoretic tool also used in [DKW23].
Importantly, using this vector does not violate adaptive corruption constraints since the transition
remains entirely information-theoretic. For honest authorities, however, this entropy transfer must
be achieved using the p3 components of the master secret keys, conditioned on the adversary’s
knowledge of user secret keys issued by those authorities. Unfortunately, in the security proof
of [LW11a], the semi-functional form of the user secret keys fully reveals the p3 components of an
authority’s master secret key when just two such keys are issued for distinct GIDs. To resolve this,
we must redesign the Gp3 segments of user secret keys so that even a polynomial number of such
keys leaks only limited information about the corresponding authority master secret keys. This, in
turn, necessitates a re-orchestration of the entire sequence of hybrid transitions in [LW11a].

2.4 Our composite-order Fully Adaptive MA-ABE scheme for BSP

We start by introducing several modifications to the original construction [LW11a]. First, inspired
by the approach of [DKW23], we include an element h ← G in the global parameters and mask
the ciphertext payload msg as msg ⊕ H2(e(g1, h)

s), where H2 : GT → {0, 1}∗ is a universal hash
function [CW77,CS02] (used as a randomness extractor [V+12]) and s← ZN . In the security proof,
we shift g1 from being an element of the p1 subgroup to an element g1g3 in the p1p3 subgroup. As a

result, the payload becomes masked by H2(e(g1, h)
s e(g3, h)

s ), allowing us to utilize the entropy in s

mod p3 to fully randomize the payload in the final game. Additionally, since the only step in [LW11a]
that relies on a target-group-based computational assumption is the final transition – which our
proof replaces with information-theoretic transition – we no longer need to embed the secret shares
of s in the target group. Instead, we provide ElGamal-style encryptions of the secret shares in the
source group G, under the corresponding authority public keys. Specifically, for each row x in the

BSP access structure (M, ρ), we include: C1,x = g
λx+αρ(x)

rx

1 , C2,x = grx1 , C3,x = g
ωx+yρ(x)rx

1 for all
rows x of the associated BSP access structure (M, ρ).

This transformation results in smaller ciphertexts and faster encryption, since source group
elements are significantly more compact than target group elements and exponentiations are much
faster there. For user secret keys, instead of generating them as skGID,u = gαu

1 H1(GID)
yu — as done

in the original [LW11a] construction—we define them as skGID,u = hαuH1(GID)
yu . Observe that,

unlike [DKW23], we do not use the element h to eliminate the α components of the authority master
keys. Instead, we retain α as an integral part of the authority’s secret.

Security Analysis. We now outline our security proof strategy. For simplicity of exposition in this
overview, we exclude the case of malicious authorities—that is, authorities created by the adversary
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itself. This simplification does not impact the validity or structure of the security argument. The
formal security proofs of our constructions, presented in the main body, fully account for maliciously
generated authorities and handle them accordingly.

Hyb0: This is the real fully adaptive security game described in Section 2.1.

Hyb1: Modify the random oracle H1 to return random elements from Gp1 . This change is indistin-
guishable under the subgroup decision assumption between Gp1 and G (Assumption 4.1 in [DKW23]).
Consequently, for any uncorrupted authority u, the yu value modulo p2 and p3 are information
theoretically hidden no matter how many keys the attacker requests from the authority u.

Hyb2: Add a Gp3 component to each part of the challenge ciphertext. That is, the compo-

nents of the challenge ciphertext takes the form C0 = msgb ⊕ H2(e(g1, h)
s e(g3, h)

s′′ ), for all

x ∈ [ℓ]: C1,x = g
λx+αρ(x)

rx

1 g
λ′′
x+αρ(x)

r′′x
3 , C2,x = grx1 g

r′′x
3 , C3,x = g

ωx+yρ(x)rx

1 g
ω′′
x+yρ(x)r

′′
x

3 , where

b ← {0, 1}, s′′, {r′′x}x∈[ℓ] ← ZN , {λ′′
x}x∈[ℓ], {ω′′

x}x∈[ℓ], are secret shares of s′′ and zero with respect
to the challenge BSP access policy (M, ρ). This transition follows from the subgroup decision
assumption between Gp1 and Gp1p3 (Assumption 4.2 in [DKW23]).

Hyb3: We change the Gp3 components of {C3,x}x∈[ℓ] to include shares of a random value instead of

zero that is, {ω′′
x}x∈[ℓ] are now shares of some w′′ ← ZN . This is an information theoretic step relying

on two facts. (1) That the attacker has no information on yu(mod p3) of any uncorrupted authority
u per our step in Hyb1. The fact that yu mod p3 is hidden (and each authority appears at most
once in a ciphertext) means that C3,x cannot be distinguished from random in the Gp3 subgroup.
Thus, the share is hidden when row x corresponds to an uncorrupted authority u. (2) That the
rows of the challenge matrix (M, ρ) associated with the corrupted authorities are unauthorized for
decryption. Hence, they are insufficient for learning the value of the p3 component of the shared
secret.

Critically, this step relies on an information-theoretic argument, which eliminates the challenges
associated with embedding a reduction to a computational assumption in the presence of adaptive
corruptions. As highlighted earlier, this principle is a central theme of our entire reduction strategy.
Throughout the proof, we separate computational and information-theoretic components. All
aspects of the analysis that depend on the adversary’s corruption behavior are confined to the
information-theoretic segments, where adaptivity poses no difficulty.

Hyb4: Add a Gp2 component to each part of challenge ciphertext. That is, the challenge ci-

phertext takes the form C0 = msgb ⊕ H2(e(g1, h)
s e(g2, h)

s′ e(g3, h)
s′′), for all x ∈ [ℓ]: C1,x =

g
λx+αρ(x)

rx

1 g
λ′
x+αρ(x)

r′x
2 g

λ′′
x+αρ(x)

r′′x
3 , C2,x = grx1 g

r′x
2 g

r′′x
3 , C3,x = g

ωx+yρ(x)rx

1 g
ω′
x+yρ(x)r

′
x

2 g
ω′′
x+yρ(x)r

′′
x

3 ,

where b ← {0, 1}, s′, {r′x}x∈[ℓ] ← ZN , {λ′
x}x∈[ℓ], {ω′

x}x∈[ℓ], are secret shares of s′ and zero with
respect to the challenge access policy (M, ρ). This transition follows from subgroup decision
assumption between Gp1 and Gp1p2 (Assumption 4.3 in [DKW23]).

Hyb5: Modify the random oracle H1 to return random elements from Gp1p3 with the restriction
that the Gp3 components of all the random oracle H1 outputs being the same. The proof that this
change is indistinguishable actually goes through a sequence of sub-hybrids where we change the
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oracle queries one by one. Intuitively, changing the random oracle H1 output for a certain GID is
akin to making the secret key components for GID to be semi-functional. Thus, the proof will need
to leverage the fact that the key components acquired by GID do not satisfy the challenge ciphertext
access structure even when combined with corrupt authorities. For each GID the proof will first
establish this in the Gp2 subgroup to be “temporarily semi-functional”, then use this to move it
to the “permanent semi-functional” space in Gp3 . While doing this latter movement, the proof
will carefully ensure that the Gp3 component is the same across all the random oracle H1 queries.
Finally, undo the work in the Gp2 space to make it available for moving the next GID over.

We consider the following sequence of sub-hybrids for each query GIDj for H1.

• First modify the random oracle output H1(GIDj) to be a random element in Gp1p2 instead of
Gp1 . This change is indistinguishable under the subgroup decision (Assumption 4.3 in [DKW23])
between Gp1 and Gp1p2 .

• Modify the Gp2 components of {C3,x}x∈[ℓ] to involve shares of a random value as opposed to zero,

that is, {ω′
x}x∈[ℓ] are now shares of some random w′ ← ZN . This is an information theoretic step

which uses the fact that the rows of the challenge matrix (M, ρ) associated with the corrupted
authorities in conjunction with all those rows for which the adversary requests a secret key
for GIDj are unauthorized for decryption. The adaptive corruption of the authority as well as
the adaptive key requests for GIDj do not cause any problems. We emphasize that since this
information theoretic argument is done over the Gp2 subgroup, it does not matter whether the
adversary has information about the Gp3 from keys for other global identities. This is the benefit
for modifying keys one by one in an isolated subspace.

• Next, add the same Gp3 component to H1(GIDj) that was added to all the prior H1 queries. We
prove the indistinguishable of this transition under a subgroup decision assumption between Gp1p2

and G which is a slight variant of Assumption 4.4 of [DKW23]. More precisely, the assumption we
use states that an element of the form T1T2 ∈ Gp1p2 is indistinguishable from T1T2X3 ∈ G given
((N = p1p2p3,G,GT , e), g1, g2, X1X3, Z2Z3), where g1, X1, T1 ← Gp1 , g2, Z2, T2 ← Gp2 , X3, Z3 ←
Gp3 . This new assumption can be proven to hold under the original Assumption 4.3 of [DKW23]
in three hybrid steps3.

• Modify the Gp2 components of {C3,x}x∈[ℓ] to again involve shares of zero, that is, {ω′
x}x∈[ℓ] are,

once again, shares of zero. This is again an information theoretic step similar to the Hyb4.

• Remove the Gp2 component of the random oracle output H1(GIDj), that is, make it a random
element from Gp1p3 with the restriction that its Gp3 component is now the same as all prior H1

query. This transition is indistinguishable under the subgroup decision assumption between Gp1

and Gp1p2 (Assumption 4.3 of [DKW23]).

Note that in the above sequence of sub-hybrids, the Gp2 subgroup is repeatedly used to “escort”
values to theGp3 subgroup. So far, the structure of the proof broadly mirrors that of [LW11a,DKW23],

3The original Assumption 4.3 of [DKW23] ensures indistinguishability between random elements of Gp1p2 and those
of G given the same auxiliary information as our structured variant. We can reduce our assumption to Assumption
4.3 of [DKW23] via the following hybrid steps. In the first step applying Assumption 4.3 of [DKW23], we move from a
random T1T2 ← Gp1p2 to a random T1T2Y3 ← G, where Y3 ← Gp3 independent of X3 ∈ Gp3 . The second transition is
an information-theoretic step where we visualize T1T2Y3 as T1T2(U3X3) where U3 ← Gp3 . This holds since p3 is prime.
In the third step, we move from T1T2U3X3 to T1T2X3 via another application of Assumption 4.3 from [DKW23]. Here,
given an instance of Assumption 4.3 of [DKW23] where the challenge element is T , we prepare our challenge element
as TX1X3. It is easy to observe that if T ← G, then we simulate T1T2U3X3 while if T ← Gp1p2 , we simulate T1T2X3.
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although there are important differences in the low-level details. In particular, unlike [LW11a],
which employs a single semi-functional form of the ciphertext, our approach introduces multiple
semi-functional forms to handle the more complex setting of adaptive authority corruption, in
addition to adaptive secret key queries. Another critical distinction from both [LW11a] and [DKW23]
lies in the treatment of H1(GIDj): at the end of this sub-hybrid sequence, all such outputs share the
same Gp3 component. This uniformity is crucial in the information-theoretic step that follows, as
it tightly bounds the amount of information revealed to the adversary about αu mod p3 and yu
mod p3 for honest authorities u via secret key queries. It is at this next step that we sharply depart
from both [LW11a] and [DKW23]. The former could not support adaptive authority corruption
due to reliance on a computational transition at this point, while the latter resorted to an intricate
proof involving a long sequence of interleaved computational and information-theoretic steps across
two parallel subsystems. By contrast, we handle this transition in a single, information-theoretic
step, offering both conceptual simplicity and proof efficiency.

Hyb6: Change the Gp3 components of {C1,x}x∈[ℓ] to include shares of an independent random value

as opposed to the secret s′′ used in the masking term of C0. In order to show that this change is
statistically indistinguishable, we argue that the game transcript after Hyb5 is identically distributed
to that in Hyb6 once we make some implicit adjustments. First, note that the shares {λ′′

x}x∈[ℓ] and
in the set {ω′′

x}x∈[ℓ] for all the rows x of the challenge access matrix M associated with corrupt
authorities are information theoretically revealed to the adversary. However, by the game restriction
the subspace spanned by those rows does not include the vector (1, 0, . . . , 0). We may assume that
this holds modulo p3. This means that there must exist a vector z ∈ Zd

N such that z is orthogonal
to all these rows of M but is not orthogonal to (1, 0, . . . , 0), (i.e., the first entry of z is nonzero).
Let vector v′′ and w′′ be the vectors generating the shares {λ′′

x}x∈[ℓ] and {ω′′
x}x∈[ℓ] respectively,

that is, s′′ be the first entry of vector v′′. Consider the vectors v̂′′ = v′′ + tz and ŵ′′ = w′′ − t
cz

where t← ZN and X3 = hc3 is the Gp3 component of H1(GID). Since the first entry of z is nonzero
and t is uniformly and independently distributed over ZN , it follows that the first entry of v̂′′ is
uniformly and independently distributed from s′′. Also, since w′′ is already uniformly distributed so
becomes ŵ′′. Hence, it follows that if we generate the shares {λ′′

x}x∈[ℓ] and {ω′′
x}x∈[ℓ] using v̂′′ and

ŵ′′ respectively, then we arrive at Hyb6. It is sufficient to show that the entire game transcript when
the shares {λ′′

x}x∈[ℓ] and {ω′′
x}x∈[ℓ] are generated using v̂′′ and ŵ′′ respectively instead is statistically

close to that at the end of Hyb5. We divide our argument into the following three cases:

1. For rows x of M corresponding to corrupt authorities, the shares λ′′
x and ω′′

x remain unaffected
by this transformation, as the vector z is chosen specifically to be orthogonal to these rows.

2. For rows x of M associated with honest authorities for which no user keys have been issued,
the Gp3 segments of C1,x and C3,x that are revealed to the adversary remain unchanged
if we implicitly redefine the p3 segments of the master secret keys for these authorities as
α̂ρ(x) = αρ(x) − (r′′x)

−1(Mx · tz) and ŷρ(x) = yρ(x) + (c · r′′x)−1(Mx · tz). Since no user keys are
queried for these authorities, the values αρ(x) mod p3 and yρ(x) mod p3 remain information-
theoretically hidden from the adversary, ensuring that this implicit change remains completely
unnoticed.

3. For rows x of M associated with honest authorities for which one or more user keys have been
issued, the Gp3 segments of C1,x and C3,x that are information-theoretically revealed to the
adversary remain unaltered under our implicit redefinition of the p3 segments of the authority
master keys, as previously described. However, in contrast to the previous case, the issuance of
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one or more user keys (now in semi-functional form, each containing a Gp3 segment) means that
the values αρ(x) mod p3 and yρ(x) mod p3 are no longer information-theoretically hidden from
the adversary. Nevertheless, due to our careful structuring at the end of Hyb5 – specifically,
ensuring that all H1 queries yield identical Gp3 segments – the only information about the p3
segments of the master secret keys of such authorities revealed to the adversary is the sum
αρ(x) + c · yρ(x) mod p3, even when multiple keys are issued to distinct users. Crucially, our
implicit redefinition satisfies α̂ρ(x) + c · ŷρ(x) mod p3 = αρ(x) + c · yρ(x) mod p3. Consequently,
this change remains completely indistinguishable from the adversary’s perspective, even given
the information available from the issued user keys.

Importantly, all the changes administered in this hybrid transition are implicit. Thus, as
mentioned above, the adaptive corruption of authorities is not an issue.

Hyb7: Replace C0 with a random value unrelated to the message msgb. Due to the work done so
far, s′′ mod p3 is information theoretically hidden and so s′′ has at least log(p3) bits of entropy. At
this point, the security of the universal hash function H2 hides the message.

Supporting Multi-use of Attributes. For enabling our scheme to support multi-use of attributes,
we can use the same technique as [CCG+23] which built on the core 1-ABE framework by [KW19].
In the multi-use setting, some information theoretical steps in the above hybrid transition need to
be changed into computational ones. The crux of this technique is that it allows us to guess the
rows of LSSS, for which neither the corresponding authority is corrupted nor the corresponding
secret key is queried. Hence, we can embed a computational problem into authority public keys
without caring about adaptive corruptions and secret key queries. Specifically, some information
theoretic steps in Hyb3,Hyb5,Hyb6 are changed to computational ones.

2.5 Our Composite-order Fully Adaptive MA-ABE scheme for ASP

Our construction of MA-ABE for BSP can be applied to arithmetic span programs. Recall that
ASP is represented by two matrices and a map (M,N, ρ) where the heights of M,N are ℓ and
ρ : [ℓ]→ AU . The ASP is satisfied by z ∈ ZS

N for S ⊂ AU if and only if zρ(x)Mx +Nx for x ∈ S
spans (1, 0, ..., 0). Informally, our construction of MA-ABE for ASP in composite-order groups is as
follows:

• gp = (N,G,GT , e, g1, h,H1 : {0, 1}∗ → G) is the same as in our scheme for Boolean LSSS.

• pku = gαu
1 , g

α′
u

1 , gyu1 , g
y′u
1 , sku = (αu, α

′
u, yu, y

′
u) with αu, yu ← ZN for all u ∈ AU

• ct = (C0, {C1,x, ..., C5,x}) where

C0 = msg ⊕ H2(e(g1, h)
s), C1,x = grx1 , C2,x = g

λx+αρ(x)
rx

1 , C3,x = g
λ′
x+α′

ρ(x)
rx

1

C4,x = g
ωx+yρ(x)rx

1 , C5,x = g
ω′
x+y′ρ(x)

rx

1

with λx = Mx · v, λ′
x = Nx · v, ωx = Mx ·w, ω′

x = Nx ·w for all x ∈ [ℓ], where (M,N, ρ) is the
arithmetic span program, the first element of v is s, the first element of w is 0, and ρ is injective

• skGID,u = hzuαu+α′
uH1(GID)

zuyu+y′u where zu ∈ ZN is the attribute value.

16



The security proof is also quite similar to our Boolean LSSS. Via a series of hybrids, ωx and ω′
x

in Gp3 are changed to the shares of the same random element, and all the secret keys are gradually
changed into the semi-functional form. In the final step, we argue that s mod p3 is information
theoretically hidden to the adversary. A caveat is that we require that the authorities related to the
challenge ciphertext are not corrupted in the security proof. This is because if the adversary obtains
an authority secret key sku, it can generate a malformed secret key s̃kGID,u = hzuαuH1(GID)

zuyu for
zu ∈ ZN . The problem is that this secret key is a valid secret key that allows the adversary to
incorporate the row zρ(x)Mx into the ASP computation in decryption, while only the rows of the
form zρ(x)Mx +Nx are supposed to be valid. This may allow the adversary to decrypt the challenge
ciphertext without violating admissibility.

Preventing this kind of attack seems quite challenging. Intuitively, the authority should have the
power to generate two secret keys for the same GID with different values, i.e., hzuαu+α′

uH1(GID)
zuyu+y′u

and hz
′
uαu+α′

uH1(GID)
z′uyu+y′u for any zu, z

′
u ∈ ZN s.t. zu ̸= z′u. However, one divided by the other

results in the malformed key. Hence, we need to remove this homomorphic structure from secret
keys to avoid this attack, retaining the information theoretic security property for the security proof.
It is unclear how we can overcome this challenge.

2.6 A Compiler to support corruption of authorities related to the challenge
ciphertext

While we do not have a solution for the above problem, we present a generic workaround that
allows the authorities related to the challenge ciphertext to be corrupted, but the cost of weakening
the functionality of the scheme: decryptors must possess keys from all authorities featured in a
ciphertext policy in order to decrypt the ciphertext. Security holds as long as either the adversary
corrupts no authority appearing in the challenge ciphertext policy or for each GID queried, there
exists an honest authority appearing in the challenge ciphertext policy who did not issue any
secret key. Thus, the modified construction achieves the security model of Cini et al. [CLW25], but
unlike [CLW25], our approach does not require a very-selective security model or bounds on number
of authorities, and it supports fully adaptive queries, including corruption.

Informally, the modified construction is obtained via a compiler consisting of two layers: an inner
layer of MA-ABE for ASP with full adaptive security subject to the above caveat, and an outer layer
of MA-ABE for conjunctions with full adaptive security (implied by MA-ABE for monotone BSP).
In the new scheme, to encrypt a message under an ASP policy, we encrypt the message with inner
scheme, then encrypt the result under policy “conjunction of all authorities in set U” using outer
scheme, where U is set of authorities appearing in the ASP policy. Decryption uses all keys from set
U to first decrypt outer ciphertext, recovering the inner one, which is then decrypted using the ASP
scheme. The security proof proceeds by guessing at the outset whether the adversary’s challenge
will avoid corrupted authorities. If yes, we reduce the security to that of inner ASP scheme; if no,
to the conjunction scheme. For full details, we refer to Section 7.

3 Notations

Throughout, we use λ to denote the security parameter. Boldface letters such as x denote column
vectors, and normal-font letters such as x to denote scalars. Let A denote a matrix over Zq. We use
span(A) to denote the column span of A, and we use spanm(A) to denote matrices with width m

where each column lies in span(A); this means M
$←spanm(A) is a random matrix m where each

column is chosen uniformly from span(A). We use basis(A) to denote a basis of span(A).
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Notation for pairing groups. Let PGGen be a probabilistic polynomial time algorithm that takes
input a security parameter 1λ and outputs a pairing group description (G1,G2,GT , e, q, g1, g2, gT )
where G1,G2,GT are groups of prime order q and e : G1 ×G2 → GT defines a pairing operation.
Further, g1, g2 are random generator in G1,G2 respectively and gT := e(g1, g2). As a shorthand,
the notation JxKi means gxi for i ∈ {1, 2, T}. For a vector x = (x1, . . . , xn)

T , for i ∈ {1, 2, T},
JxKi denotes a vector of n group elements (gx1

i , . . . , gxn
i )T . Similarly, for a matrix A = (a1, . . . ,aℓ)

consisting of ℓ vectors, JAKi denotes a matrix of group elements of dimensions n×ℓ: (Ja1Ki, . . . , JaℓKi).
For two matrices A and B of appropriate dimensions, define e(JAK1, JBK2) := JABKT . Further, we
denote group operations with ·, i.e., JAKi · JBKi = JA+BKi. Also, we define B⊙ JAKi = JBAKi and
JAKi ⊙B = JABKi.

For distributions D0 and D1, we write D0 ≈c D1 if they are computationally indistinguishable
and D0 ≈s D1 if they are statistically indistinguishable.

4 MA-ABE for monotone BSP from prime-order groups

Let AU denote the authority universe and let each authority control one attribute. Let GID denote
the universe of global identifiers of the users. We construct MA-ABE for access policies specified by
a monotone boolean span program (BSP) denoted by a pair (M, ρ) of a matrix M ∈ Zn×ℓ

q and a
labeling function ρ : [n]→ U , where U ⊆ AU denotes a subset of authorities. Our construction is as
in Figure 1.

Correctness. We provide the formal proof of correctness in Appendix B.1. Here, we provide
an informal sketch. Let’s look at the three components of the partial decryptions dx for all
ρ(x) ∈ S where S is the set of attributes possessed by the decrypter. e(c2,x, JkK2) transforms an
encryption of λx under the public key JAVρ(x)K1 to an encryption of λxk under the key JAVρ(x)kKT .
Similarly, e(c3,x,H1(GID)) transforms an encryption of ωx under the public key JAUρ(x)K1 to an
encryption of ωxhGID under the key JAUρ(x)hGIDKT , where JhGIDK2 := H1(GID). The product of
these two terms is thus an encryption of λxk+ ωxhGID under the key JA(Vρ(x)k+Uρ(x)hGID)KT .
Finally, e(c1,x, skρ(x),GID) transforms secret key skρ(x),GID = JVρ(x)k+Uρ(x)hGIDK2 to a secret key
JA(Vρ(x)k+Uρ(x)hGID)KT . Thus, dx is essentially a partial decryption resulting in Jλxk+ωxhGIDKT .
Since λx are secret shares of tT and ωx are secret shares of 0T , thus if the policy is satisfied by S,
then the final value d is JtTk+ 0ThGIDKT = JtTkKT . Thus, the decryption outputs msg = c0/d.

Theorem 4.1. The MA-ABE construction for monotone BSP in Figure 1 is fully adaptively secure
(Definition A.6). if all of the following hold true.

• game condition holds and ρ is injective.

• k-MDDH assumption holds in groups G1 and G2 ( Assumption A.8).

• SDG2
B1→B1,B2

assumption holds ( Assumption A.9).

• SDG2
B2→B2,B3

assumption holds ( Assumption A.9).

We prove Theorem 4.1 in Section 4.1.

4.1 Proof of Theorem 4.1

We prove full adaptive security of the MA-ABE scheme for monotone BSP presented in Figure 1
subject to the one-use restriction, that is, ρ is injective. We prove via a sequence of hybrid games.
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GlobalSetup(1λ) :

1 : PG := (G1,G2,GT , e, q, g1, g2, gT )

← PGGen(1λ)

2 : A1
$←Zk×(k+1)

q , k
$←Z2k+1

q

3 : Sample hash function:

H1 : GID → G2k+1
2

4 : ret gp := (PG, JA1K1,k,H1)

AuthSetup(gp, i) :

1 : Vi,Ui
$←Z(k+1)×(2k+1)

q

2 : pki,0 := JA1ViK1, pki,1 := JA1UiK1
3 : ret mski := (Vi,Ui),

pki := (pki,0, pki,1)

KGen(gp,mski,GID) :

1 : Compute JhGIDK2 := H1(GID)

2 : ret ski,GID := JVik+UihGIDK2
Dec(gp, (M, ρ), ct,GID, {skρ(x),GID}ρ(x)∈S) :
1 : If (1, 0, . . . , 0) /∈ RowSpan(Mx):

ret ⊥
2 : Let {wx}ρ(x)∈S be constants s.t.∑

ρ(x)∈S wxMx = (1, 0, . . . , 0)

3 : ∀ρ(x) ∈ S:

dx := e(c2,x, JkK2) · e(c3,x,H1(GID))
e(c1,x,skρ(x),GID)

4 : Compute d :=
∏

ρ(x)∈S dwx
x

5 : ret c0/d

Enc(gp,msg ∈ GT , (M, ρ), {pkρ(i)}i∈[n]) :

1 : t
$←Z2k+1

q , Tbot
$←Z(ℓ−1)×(2k+1)

q , T :=

(
tT

Tbot

)
2 : Wbot

$←Z(ℓ−1)×(2k+1)
q , W :=

(
0T

Wbot

)
3 : ∀x ∈ [n] : let λx := MxT ∈ Z1×(2k+1)

q , ωx := MxW ∈ Z1×(2k+1)
q

4 : c0 := msg · JtTkKT ∈ GT

5 : ∀x ∈ [n]: sx
$←Zk

q , c1,x := JsTxA1K1 ∈ G
1×(k+1)
1

6 : ∀x ∈ [n]: c2,x := JλxK1 · (sTx ⊙ pkρ(x),0) ∈ G1×(2k+1)
1

7 : ∀x ∈ [n]: c3,x := JωxK1 · (sTx ⊙ pkρ(x),1) ∈ G1×(2k+1)
1

8 : ret ct := (c0, {c1,x, c2,x, c3,x}x∈[n])

Figure 1: Construction: MA-ABE for monotone BSP from prime-order groups

Suppose the adversary makes Q queries to the random oracle H1. The hybrid games are as follows:
HybReal,Hyb

′
Real,Hyb1,Hyb2, {Hyb3,j,1,Hyb′3,j,1,Hyb3,j,2,Hyb′3,j,2,Hyb3,j,3}j∈[Q], Hyb4,Hyb5.

Hybrid HybReal. This is the real-world game MA-ABEfully-adaptive
A .

Hybrid Hyb′Real. This is same as HybReal except that the challenger computes (gp, st)← GlobalSetup∗(1λ)

and provides gp to the adversary. Here, GlobalSetup∗ runs the same computation as GlobalSetup to
compute gp and additionally also computes the following:

A2
$←Z1×(k+1)

q ,B1,B2
$←Z(2k+1)×k

q ,B3
$←Z(2k+1)×1

q(
A∗

1,A
∗
2

)
=

(
A1

A2

)−1

,
(
B∗

1,B
∗
2,B

∗
3

)
=
((

B1,B2,B3

)−1
)T

.

Then, st = (A1,A2,A
∗
1,A

∗
2,B1,B2,B3,B

∗
1,B

∗
2,B

∗
3). Observe that ∀i, j ∈ {1, 2}: AiA

∗
j = I if i = j,

and 0 if i ̸= j, and ∀i, j ∈ {1, 2, 3}: BT
i B

∗
j = I if i = j, and 0 if i ̸= j.
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Hybrid Hyb0. This is same as HybReal except that the hash function H1 is programmed to

output all hash values in span(B1) as follows: on input GID, sample hGID
$← Zk

q and output

H1(GID) = J B1hGID K2.

Hybrid Hyb1. This is same as Hyb0 except that the ciphertext is changed to semi-functional
form. Specifically, let UA denote the rows of M that correspond to the public keys provided by
the adversary A, that is UA = {i ∈ [n] : ρ(i) ∈ UA}. Let UA = [n] \ UA. Then, we can write the
normal ciphertexts as follows: ct := (c0, {c1,x, c2,x, c3,x}x∈[n]), where c0 := msgb · JtTkKT , ∀x ∈ [n]:

c1,x := JcTx K1 := JsTxA1K1, c2,x := JλxK1 ·(sTx ⊙pkρ(x),0) if x ∈ UA, else c2,x := JλxK1 ·( cTx ⊙ JVρ(x)K1 ),

c3,x := JωxK1 · (sTx ⊙ pkρ(x),1) if x ∈ UA, else c3,x := JωxK1 · ( cTx ⊙ JUρ(x)K1 ). Given this notation,

the ciphertext in Hyb1 is same as the normal ciphertext except that for all x ∈ UA: c1,x := JcTx K1 ,

where cx
$←Zk+1

q . We call this semi-functional ciphertext. Observe that in total this means that

semi-functional ciphertext changes c1,x, c2,x, c3,x for x ∈ UA.

Hybrid Hyb2. This is same as Hyb1 except that the ciphertext structure is changed as follows:

the first row of matrix W is changed from 0T to γB∗
3
T , where γ

$←Zq, that is, W =

(
γB∗

3
T

Wbot

)
.

Hybrid Hyb3,j−1 for j ∈ [q + 1]. This hybrid is same as Hyb2 except that for the ith global
identifier GIDi for i ≤ j − 1, the challenger programs the output H1(GIDi) of the random oracle

H1 as H1(GIDi) = J B1hGIDi
+B3 K2, where hGIDi

$←Zk
q , while for i > j − 1, it programs the output

H1(GIDi) of the random oracle H1 as H1(GIDi) = JB1hGIDi
K2 as earlier.

Observe that Hyb3,0 is same as Hyb2. We introduce a sequnce of intermediate hybrids Hyb3,j,1,
Hyb′3,j,1,Hyb3,j,2,Hyb

′
3,j,2,Hyb3,j,3 between Hyb3,j−1 and Hyb3,j for all j ∈ [q] as defined below.

Hybrid Hyb3,j,1 for j ∈ [Q]. This hybrid is same as Hyb3,j−1 except that for the jth global
identifier GIDj , the challenger programs the output H1(GIDj) of the random oracle H1 as H1(GIDj) =

J B1hGIDj
+B2h

′
GIDj

K2, where hGIDj
,h′

GIDj

$←Zk
q .

Hybrid Hyb′3,j,1. This is same as Hyb3,j,1 except that the ciphertext structure is changed as follows:

the first row of matrix W is changed from γB∗
3
T to (B∗

2δ + γB∗
3)

T , where γ
$←Zq and δ

$←Zk
q that is,

W =

(
(B∗

2δ + γB∗
3)

T

Wbot

)
.

Hybrid Hyb3,j,2. This is same as Hyb′3,j,1 except that for the jth global identifier GIDj , the chal-

lenger programs the output H1(GIDj) of the random oracle H1 as H1(GIDj) = J B1hGIDj
+B2h

′
GIDj

+B3 K2,

where hGIDj
,h′

GIDj

$←Zk
q .
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Hybrid Hyb′3,j,2. This is same as Hyb3,j,2 except that the ciphertext structure is changed as

follows: the first row of matrix W is changed from (B∗
2δ + γB∗

3)
T to γB∗

3
T , where and γ

$←Zq, that

is, W =

(
γB∗

3
T

Wbot

)
.

Hybrid Hyb4. This is same as hybrid Hyb3,Q except that the ciphertext structure is changed

as follows: the first row of matrix T is changed from tT to (t + τB∗
3)

T , where τ
$←Zq, that is

T =

(
(t+ τB∗

3)
T

Tbot

)
. Crucially, we note that c0 remains unchanged, that is, the masking term is

still JtTkKT .

Hybrid Hyb5. This is same as Hyb4 except that the ciphertext is changed to an encryption of a

random value, that is, c0 is changed from c0 := msgb · JtTkKT to c0 := ζ · JtTkKT , where ζ
$←GT .

Claim 4.2. Hybrids HybReal and Hyb′Real are identically distributed.

Claim 4.3. If MDDHG2
k,2k+1 holds, then Hyb′Real ≈c Hyb0.

Claim 4.4. If MDDHG1
k,k+1 holds, then Hyb0 ≈c Hyb1.

Claim 4.5. If game condition holds and ρ is injective, then, Hyb1 ≈s Hyb2.

Claim 4.6. If SDG2
B1→B1,B2

holds, then Hyb3,j−1 ≈c Hyb3,j,1 for all j ∈ [Q].

Claim 4.7. If game condition holds and ρ is injective, then, Hyb3,j,1 ≈s Hyb
′
3,j,1.

Claim 4.8. If S̃D
G2

B2→B2,B3
holds , then Hyb′3,j,1 ≈c Hyb3,j,2 for all j ∈ [Q].

Here, we note that the S̃D
G2

B2→B2,B3
assumption is a variant of the Subgroup Decision assumption.

We formally state this assumption below and show that it reduces to the original Subgroup Decision
assumption in Claim 4.16.

Claim 4.9. If game condition holds and ρ is injective, then, Hyb3,j,2 ≈s Hyb
′
3,j,2.

Claim 4.10. If SDG2
B1→B1,B2

holds , then Hyb′3,j,2 ≈c Hyb3,j for all j ∈ [Q].

Claim 4.11. If game condition holds and ρ is injective, then, Hyb3,Q ≈s Hyb4.

Claim 4.12. Hyb4 ≈s Hyb5.

Claim 4.13. In Hyb5, adversary A’s winning advantage is 0.

Thus, Claims 4.2 to 4.13 and hybrid argument imply that Theorem 4.1 holds.

In the rest of this section, we present the S̃D
G2

B2→B2,B3
assumption and the proofs of Claims 4.11

and 4.12 since they are the most non-trivial ones when compared to previous work. Proofs of other
claims are deferred to Appendix B.2.

We start by presenting the S̃D
G2

B2→B2,B3
assumption. It is defined with respect to following set

of matrices: Fix parameters ℓ1, ℓ2, ℓ3. Pick random

B1
$←Zℓ×ℓ1

q ,B2
$←Zℓ×ℓ2

q ,B3
$←Zℓ×ℓ3

q ,

where ℓ := ℓ1 + ℓ2 + ℓ3. Let (B∗
1,B

∗
2,B

∗
3)

T = (B1,B2,B3)
−1 so that BT

i B
∗
i = I (known as

non-degeneracy) and BT
i B

∗
j = 0 if i ̸= j (known as orthogonality).
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Assumption 4.14 (Subgroup Decision Assumption Variant S̃D
G2

B2→B2,B3
). Fix parameter ℓ3 = 1,

that is B3 ∈ Zℓ
q, where ℓ = ℓ1 + ℓ2 + 1. The S̃D

G2

B2→B2,B3
assumptions states that for any p.p.t.

adversary A, there exists a negligible function negl(·) such that for any security parameter λ ∈ N,

Adv
SD

G2
Bi→Bi,Bj

A (λ) := |Pr[A(D, Jt0K2) = 1]− Pr[A(D, Jt1K2) = 1]| ≤ negl(λ)

where

PG := (G1,G2,GT , e, q, g1, g2, gT )← PGGen(1λ),

D = (PG, JB1K2, JB2K2, JB3K2, basis(B∗
1), basis(B

∗
2), basis(B

∗
2,B

∗
3)),

t0 := B2h, t1 := B2h+B3,h
$←Zℓ2

q .

Remark 4.15. Unlike the standard Subgroup Decision assumption where t1 := B2h+ rB3 where

r
$←Zq, here the coefficient of B3 is fixed to be 1. Note that this assumption is crucially used

for changing the hash function output to be of the form B1h+B2h
′ +B3. Eventually, the final

semi-functional form of the secret key will have hash output of the form B1h+B3 and this fixed
(non-random) B3 term is crucial for proving Claim 4.11 which is the main technical component of
this work.

Claim 4.16. If SDG2
B2→B2,B3

( Assumption A.9) holds, then S̃D
G2

B2→B2,B3
( Assumption 4.14) holds.

Proof. We will instantiate the SDG2
B2→B2,B3

assumption with ℓ3 = 1. Then in this assumption,

t0 ← span(B2) can be equivalently written as t0 = B2h for some h
$←Zℓ2

q . Also, t1 ← span(B2,B3)

can be equivalently written as t1 = B2h+ rB3 for some h
$←Zℓ2

q , r
$←Zq. To prove the claim, we will

consider a sequence of four hybrid distributions Hyb0,Hyb1,Hyb2,Hyb4 containing (D, JtK2), where
t is equal to the following across the hybrids: B2h in Hyb0, B2h+ rB3 in Hyb1, B2h+ (r + 1)B3

in Hyb2, and B2h+B3 in Hyb3. From SDG2
B2→B2,B3

assumption, we know that Hyb0 and Hyb1 are
computationally indistinguishable. Next, observe that r and r + 1 are identically distributed for a
uniform random r. Then, by post-processing lemma it follows that Hyb1 and Hyb2 are identically
distributed.

Lastly, we argue that Hyb2 and Hyb3 are computationally indistinguishable assuming the
SDG2

B2→B2,B3
assumption. For this, we can create a simple reduction that obtains (D, JtK2) from

the SDG2
B2→B2,B3

assumption challenger and sends (D, JtK2 · JB3K2) to the adversary. If t = B2h,
then the adversary sees Hyb3 distribution and if t = B2h + rB3, then the adversary sees Hyb2
distribution.

Proof of Claim 4.11. Observe that the only difference between Hyb3,Q and Hyb4 is in ciphertext
components c2,x for all x ∈ [n]. Observe that c2,x contains JλxK1, where λx is a secret share of

tT ∈ Z1×(2k+1)
q in Hyb3,Q, but it is a secret share of (t+ τB∗

3)
T in Hyb4. Therefore, to prove that

the hybrids are statistically indistinguishable, we will argue that τB∗
3
T is information theoretically

hidden to the adversary A in Hyb4.
Suppose the challenge access policy (M, ρ) is defined over a set of authorities U ⊆ AU , that is,

ρ : [n]→ U . Recall from Appendix A.5 that the game condition requires that UA ∩ UB = ∅ and for
each GID ∈ GID, it is required that S ∪ SGID /∈ (M, ρ).

To show that τB∗
3
T is information theoretically hidden from the adversary A in Hyb4, we only

need to rely on S /∈ (M, ρ) which is implied by the second game condition. Here, S /∈ (M, ρ) is a
shorthand for (1, 0, . . . , 0) /∈ rowSpan({Mx}ρ(x)∈S).
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Note that the vectors MxT for all rows x of the challenge access matrix M labeled by corrupt
authorities (that is, ρ(x) ∈ S) are information theoretically revealed to A. However, by the game
condition the subspace spanned by those rows does not include the vector (1, 0, . . . , 0). This means
that there must exist some vector uT ∈ Z1×ℓ

q such that uT is orthogonal to all these rows of M (that

is, Mxu = 0) but is not orthogonal to (1, 0, . . . , 0), that is, the first entry of uT must be non-zero.

We consider a basis U of Zℓ
q involving the vector u and write T =

(
(t+ τB∗

3)
T

Tbot

)
= Ũ+ ubT for

some b ∈ Z2k+1
q and some Ũ ∈ Zℓ×(2k+1)

q such that each column of Ũ lies in the column span of

U \u. Hence, Ũ reveals no information about b. Now since the first entry of u is non-zero, it follows
that the first row of T, that is, (t+ τB∗

3)
T , depends on b. But MxT for all the corrupted rows of

M contains no information about b since u is orthogonal to all these rows. Thus, it follows that
these rows do not leak information of (t+ τB∗

3)
T .

Therefore, the only possible way for A to get information about τB∗
3
T is through the ciphertext

components c2,x corresponding to the uncorrupted rows of M. However, for each such row x, A
can only recover cTx , MxT + cTxVρ(x) information theoretically. Without loss of generality, we

can compute Vρ(x) := Vρ(x),1B
∗
1
T +Vρ(x),2B

∗
2
T +Vρ(x),3B

∗
3
T , where Vρ(x),1,Vρ(x),2

$←Z(k+1)×k
q , and

Vρ(x),3
$←Z(k+1)×1

q . Let the first entry of Mx be mx, that is, Mx = (mx, . . .). Then, observe that we
can write

Mx

(
(t+ τB∗

3)
T

Tbot

)
+ cTxVρ(x)

= Mx

(
tT

Tbot

)
+mxτB

∗
3
T + cTxVρ(x)

= Mx

(
tT

Tbot

)
+ (mxτ + cTxVρ(x),3)B

∗
3
T + cTxVρ(x),1B

∗
1
T + cTxVρ(x),2B

∗
2
T

= Mx

(
tT

Tbot

)
+ (cTxV

′
ρ(x),3)B

∗
3
T + cTxVρ(x),1B

∗
1
T + cTxVρ(x),2B

∗
2
T

where we can write V′
ρ(x),3 = Vρ(x),3 +∆ such that mxτ = cTx∆. Therefore, to complete the proof,

it suffices to argue that Vρ(x),3 and V′
ρ(x),3 are identically distributed. We show this next.

Observe that since ρ is injective, hence it follows that Vρ(x) is a fresh random matrix and the
only other place it appears is in secret keys skρ(x),GID. Specifically, skρ(x),GID information theoretically
reveals Vρ(x)k+Uρ(x)B1hGID +Uρ(x)B3. Since k is uniform random, we can equivalently write

it as k := B1k1 + B2k2 + k3B3 for uniform random k1
$←Zk

q , k2
$←Zk

q , k3
$←Zq. Further, we

can write Uρ(x) := Uρ(x),1B
∗
1
T +Uρ(x),2B

∗
2
T +Uρ(x),3B

∗
3
T , where Uρ(x),1,Uρ(x),2

$←Z(k+1)×k
q , and

Uρ(x),3
$←Z(k+1)×1

q . Then observe that we can write

Vρ(x)k+Uρ(x)B1hGID +Uρ(x)B3

= Vρ(x),1k1 +Vρ(x),2k2 + k3Vρ(x),3 +Uρ(x),1hGID +Uρ(x),3

= Vρ(x),1k1 +Vρ(x),2k2 + k3 V′
ρ(x),3 +Uρ(x),1hGID + U′

ρ(x),3

where we can write V′
ρ(x),3 = Vρ(x) +∆ and U′

ρ(x) = Uρ(x) − k3∆, where ∆ is as defined above,

that is, choose ∆ such that mxτ = cTx∆. Therefore, Vρ(x),3 and V′
ρ(x),3 are identically distributed

as long as Uρ(x),3 and U′
ρ(x),3 are identically distributed. We show this next. Observe that since ρ

23



is injective, hence it follows that Uρ(x) is a fresh random matrix and other than skρ(x),GID, the only
other place it appears is in ciphertext components c3,x. For ciphertext components c3,x corresponding
to the uncorrupted rows of M, A can recover MxW + cTxUρ(x) information theoretically. Observe
that we can write

Mx

(
γB∗

3
T

Wbot

)
+ cTxUρ(x)

= Mx

(
γB∗

3
T

Wbot

)
+ cTxUρ(x),3B

∗
3
T + cTxUρ(x),2B

∗
2
T + cTxUρ(x),1B

∗
1
T

= Mx

(
γB∗

3
T

Wbot

)
+ cTx (k3∆)B∗

3
T + cTxU

′
ρ(x),3B

∗
3
T + . . .

= Mx

(
γB∗

3
T

Wbot

)
+mxk3τB

∗
3
T + cTxU

′
ρ(x),3B

∗
3
T + . . .

= Mx

(
(γ + k3τ)B

∗
3
T

Wbot

)
+ cTxU

′
ρ(x)

= Mx

(
γ′B∗

3
T

Wbot

)
+ cTxU

′
ρ(x)

where we can write γ′ = γ + k3τ . Therefore to complete this part of the proof, it suffices to argue
that γ and γ′ are identically distributed. This holds true because γ, k3, τ are uniform random, that

is, γ, k3, τ
$←Zq.

To complete the proof, we argue that substituting (Uρ(x),3,Vρ(x),3, γ) with (U′
ρ(x),3,V

′
ρ(x),3, γ

′)

(as described above) for all rows x of matrix M for which the challenger sampled the authority
keys (that is, uncorrupted rows plus the rows for which the adversary queried the master secret
key) allows us to move from Hyb4 to Hyb3,Q. We have already argued that this substitution does
not change the distribution of the secret keys and ciphertext obtained by the adversary A for
the uncorrupted rows of M. For the case of rows x of M for which the adversary queried the

master secret key, the adversary additionally learns U′
ρ(x),3,V

′
ρ(x),3 and Mx

(
γ′B∗

3
T

Wbot

)
in Hyb3,Q and

Uρ(x),3,Vρ(x),3 and Mx

(
γB∗

3
T

Wbot

)
in Hyb4 and we argue that this does not help the adversary A to

distinguish between Hyb3,Q and Hyb4. This is because Uρ(x),3 and U′
ρ(x),3 are identically distributed,

Vρ(x),3 and V′
ρ(x),3 are identically distributed, and Mx

(
γB∗

3
T

Wbot

)
= Mx

(
γ′B∗

3
T

Wbot

)
= Mx

(
0T

Wbot

)
due to the game condition.

Therefore, it follows that Hyb3,Q and Hyb4 are statistically indistinguishable. This completes
the proof of Claim 4.11.

Proof of Claim 4.12. Observe that in Hyb4 and Hyb5, t is sampled randomly as t
$←Z2k+1

q . Alter-

nately, we can also sample it as t := B∗
1t1 +B∗

2t2 + t3B
∗
3, where t1

$←Zk
q , t2

$←Zk
q , t3

$←Zq. Note that
the distribution of t is identical in both of the above ways. So, we will use the latter form to show
that Hyb4 and Hyb5 are statistically indistinguishable. Observe that in both Hyb4 and Hyb5 the
vector t shows up in ciphertext components c0 and c2,x. In c2,x, it shows up in matrix T used for

computing λx. And recall that T =

(
(t+ τB∗

3)
T

Tbot

)
. Hence, the first row of T can be written as

(B∗
1t1 +B∗

2t2 + (t3 + τ)B∗
3)

T . Since τ
$←Zq, it follows that c2,x reveals no information about t3 ∈ Zq.
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So, we will use the entropy of t3 to argue that c0 can be switch from encoding msgb in Hyb4 to
encoding a random ζ in Hyb5.

Without loss of generality, suppose k is of the form k = B1k1 +B2k2 + k3B3 for some k1,k2, k3.
Then observe that JtTkKT = JtT1 k1KT · JtT2 k2KT · Jt3k3KT . It follows then that Jt3k3KT is uniform
random in GT as long as k3 ̸= 0. Consequently, msgb · Jt3k3KT and ζ · Jt3k3KT are identically
distributed. Thus, c0 in Hyb4 and Hyb5 are identically distributed.

Therefore, it follows that Hyb4 and Hyb5 are statistically indistinguishable, where the statistical
security loss comes from the scenario when k3 = 0. This completes the proof of Claim 4.12.

5 MA-ABE for NC1 with Multi-Use Security

Our construction of MA-ABE in Section 4 only supprts single-use of attributes since its security
proof relies on ρ being injective. In this section, we present our construction of decentralized
MA-ABE for NC1 with multi-use security. To prove security, we rely on the Core 1-ABE construction
of [KW19]. Due to space constrains, we defer the security proof and the Core 1-ABE needed for it
to Appendix C.

5.1 Our Construction

The construction is same as the one in Section 4 except that the dimensions of some of the matrices
are changed as follows:

• GlobalSetup(1λ): A1
$←Zk×2k

q .

• AuthSetup(gp, i): Vi,Ui
$←Z2k×(2k+1)

q . While this increases the size of mski, we note that the
size of pki remains unchanged.

• KGen(gp,mski,GID): Change in size of mski affects the size of ski,GID as follows: ski,GID :=
JVik+UihGIDK2 ∈ G2k

2 .

• Enc(gp,msg, (M, ρ), {pkρ(i)}i∈[n]): Change in size of A1 affects the size of c1,x as follows:

c1,x := JsTxA1K1 ∈ G1×2k
1 .

Theorem 5.1 (Informal). The MA-ABE construction in Figure 1 amended with dimension changes
specified in Section 5.1 supports NC1 circuits and is fully adaptively secure (Definition A.6).

6 MA-ABE for ASP from prime-order groups

In this section, we present a MA-ABE construction for arithmetic span programs (ASPs). This
construction generalizes the MA-ABE construction for monotone BSPs presented in Figure 1.

6.1 Construction

Let AU denote the authority universe and let each authority control an attribute that can be
assigned values in Zq. Let GID denote the universe of global identifiers of the users. We construct
MA-ABE for access policies specified by an arithmetic span program (ASP) denoted by a tuple
(M,N, ρ) of matrices M,N ∈ Zn×ℓ

q and a labeling function ρ : [n]→ U , where U ⊆ AU denotes a
subset of attributes. Our construction is as in Figure 2. We prove Theorem 6.1 in Appendix D.3.
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GlobalSetup(1λ) :

1 : PG = (G1,G2,GT , e, q, g1, g2, gT )

← PGGen(1λ)

2 : A1
$←Zk×(k+1)

q , k
$←Z2k+1

q

3 : Sample hash function:

H1 : GID → G2k+1
2

4 : ret gp := (PG, JA1K1,k,H1)

AuthSetup(gp, i) :

1 : Vi,Ui, V̂i, Ûi
$←Z(k+1)×(2k+1)

q

2 : pki,0 = JA1ViK1, pki,1 = JA1UiK1

3 : p̂ki,0 = JA1V̂iK1, p̂ki,1 = JA1ÛiK1
4 : ret mski := (Vi,U,V̂i, Ûi),

pki := (pki,0, pki,1, p̂ki,0, p̂ki,1)

KGen(gp,mski,GID, zi) :

1 : Compute JhGIDK2 := H1(GID)

2 : ret ski,GID := (zρ(x),

J(ziVi + V̂i)k+ (ziUi + Ûi)hGIDK2)
Dec(gp, (M,N, ρ), ct,GID, {skρ(x),GID,zρ(x)}) :
1 : If (1, 0, . . . , 0) /∈

span({zρ(x)Mx +Nx}x∈Sx
): ret ⊥

2 : Let {wx}x∈Sx be constants s.t.
∑

x∈Sx

wx(zρ(x)Mx+Nx) = (1, 0, . . . , 0)

3 : ∀x ∈ Sx: dx :=

e(c
zρ(x)

2,x · ĉ2,x, JkK2)
e(c

zρ(x)
3,x ·ĉ3,x,H1(GID))

e(c1,x,skρ(x),GID)

4 : Compute d :=
∏

x∈Sx
dwx
x

5 : ret c0/d

Enc(gp,msg ∈ GT , (M,N, ρ), {pkρ(i)}i∈[n]) :

1 : t
$←Z2k+1

q , Tbot
$←Z(ℓ−1)×(2k+1)

q , T :=

(
tT

Tbot

)
2 : Wbot

$←Z(ℓ−1)×(2k+1)
q , W :=

(
0T

Wbot

)
3 : ∀x ∈ [n] : let λx := MxT, λ̂x := NxT, ωx := MxW, ω̂x := NxW

4 : c0 := msg · JtTkKT

5 : ∀x ∈ [n]: sx
$←Zk

q , c1,x := JsTxA1K1

6 : ∀x ∈ [n]: c2,x := JλxK1 · (sTx ⊙ pkρ(x),0), ĉ2,x := Jλ̂xK1 · (sTx ⊙ p̂kρ(x),0)

7 : ∀x ∈ [n]: c3,x := JωxK1 · (sTx ⊙ pkρ(x),1), ĉ3,x := Jω̂xK1 · (sTx ⊙ p̂kρ(x),1)

8 : ret ct := (c0, {c1,x, c2,x, c3,x, ĉ2,x, ĉ3,x}x∈[n])

Figure 2: Construction: MA-ABE scheme for ASP from prime-order groups

Theorem 6.1 (Informal). The MA-ABE construction for ASP in Figure 2 is fully adaptively
secure with the additional restrictions that no attribute authority appearing in challenge ciphertext
is corrupted and adversary queries at most one key per authority and user pair (i, GID).

7 Compiler for MA-ABE for ASP: boosting security

We now show how to generically modify our MA-ABE for ASP construction in Section 6 to achieve
the security model of Cini et al. [CLW25]. However, it would satisfy the same weak functionality
as [CLW25]: decryptors must have keys from all authorities in ciphertext policy in order to decrypt.
Nevertheless, unlike [CLW25], our approach does not require a very-selective security model or
bounds on number of authorities, and it supports fully adaptive queries, including corruption.

The modified construction is obtained via a compiler consisting of two layers: an inner layer of
MA-ABE for ASP with full adaptive security with Type 1 restriction (such as in Figure 2), and
an outer layer of MA-ABE for conjunctions with full adaptive security (implied by MA-ABE for
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monotone BSP, such as in Figure 1). In the new scheme, to encrypt a message under an ASP policy,
we encrypt the message with inner scheme, then encrypt the result under policy “conjunction of all
authorities in set U” using outer scheme, where U is set of authorities appearing in the ASP policy.

GlobalSetup, AuthSetup, KGen are run for both layers, with outputs concatenated. Decryption
uses all keys from set U to first decrypt outer ciphertext, recovering the inner one, which is then
decrypted using the ASP scheme.

The security proof proceeds by guessing at the outset whether the adversary’s challenge will
avoid corrupted authorities. If yes, we reduce the security to that of inner ASP scheme; if no, to
the conjunction scheme. A wrong guess leads to abort, incurring a security loss of 1

2 . Thus, this
construction offers a clean way to match [CLW25]’s protection against corrupt authorities while
retaining fully adaptivity of our techniques.

Theorem 7.1 (Informal). There exists an MA-ABE scheme for ASP that is fully adaptive secure
with respect to the following restrictions:

1. decryption requires keys from all authorities appearing in a ciphertext,

2. either the adversary corrupts no authority appearing in the challenge ciphertext policy or for
each GID queried, there exists an honest authority appearing in the challenge ciphertext policy
who did not issue any secret key,

3. the adversary queries at most one key per authority and user id pair (i,GID).

We provide the formal construction and proof sketch in Appendix E.
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A Preliminaries: Appendix

A.1 Access Structures

In this subsection, we present the definition of access structures.

Definition A.1 (Access Structures [BL88,Bei96b]). Let U be the attribute universe. An access
structure on U is a collection A ⊆ 2U \ ∅ of non-empty sets of attributes. The sets in A are called
the authorized sets and the sets not in A are called the unauthorized sets. An access structure is
called monotone if ∀B,C ∈ 2U if B ∈ A and B ⊆ C, then C ∈ A.

A.2 Boolean Span Program

Definition A.2 (Boolean Span Program [KW93, AHY15]). Let U = {u1, . . . , um} be a set of
variables. For each ui, denote ¬ui as a new variable. Intuitively, ui and ¬ui correspond to positive
and negative attributes, respectively. Also let U ′ = {¬u1, . . . ,¬um}. A boolean span program (BSP)
over Zq is specified by a pair (M, ρ) of a matrix M ∈ Zn×ℓ

q and a labeling function ρ : [n]→ U ∪ U ′

for some integers n and ℓ. Intuitively, the map ρ labels row j with attribute ρ(j).
A boolean span program accepts or rejects an input by the following criteria. For an input

x = (x1, . . . , xm) ∈ {0, 1}1×m, we define the sub-matrix Mx of M to consist of the rows whose labels
are set to 1 by the input x. That is, it consists of either rows labelled by some ui such that xi = 1
or rows labelled by some ¬ui such that xi = 0. We say that

x ∈ {0, 1}1×m satisfies (M, ρ) iff e1 ∈ rowSpan(Mx),

where e1 := (1, 0, . . . , 0) ∈ Z1×ℓ
q .

Monotone BSP. A BSP is called monotone if the labels of the columns consist of only the
positive literals, that is, the set U .

A.3 Arithmetic Span Programs

In this section, we recall the definition of arithmetic span programs (ASP) as defined by [IW14b].

Definition A.3 (Arithmetic Span Program [IW14b]). An arithmetic span program over Zq is
specified by a tuple (M,N, ρ) of matricies M,N ∈ Zn×ℓ

q , and a labeling function ρ : [n]→ [m] for

some integers n, ℓ and m. Intuitively, the map ρ labels row j of both matrices M and N with ρ(j)th

attribute.
An arithmetic span program accepts or rejects an input by the following criteria. For j ∈ [n], let

Mj and Nj denote the jth rows of M and N respectively. For an input x = (x1, . . . , xm) ∈ Z1×m
q ,

we say that
x ∈ Z1×m

q satisfies (M,N, ρ) iff e1 ∈ span({xρ(j)Mj +Nj}j∈[n]),

where e1 := (1, 0, . . . , 0) ∈ Zℓ
q and span refers to linear span of a collection of row vectors.

A.4 Secret Sharing Schemes

In this subsection, we present the definition of secret sharing schemes.

Definition A.4 (Secret Sharing Scheme [Sha79]). A secret sharing scheme is a tuple of algorithms
(Share,Reconstruct) where Share is the share algorithm and Reconstruct is the reconstruct algorithm.
The share algorithm Share takes as input a secret z ∈ Zq and a function f : {0, 1}n → {0, 1}, and
outputs a set of shares {zi}i∈[m] together with ρ : [m]→ {0, 1, . . . , n}.
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• Correctness requires that for every x ∈ {0, 1}n, if f(x) = 1, then

Reconstruct(f, x, {zi}ρ(i)=0∪xρ(i)=1) = z.

• Security requires that for every x ∈ {0, 1}n, if f(x) = 0, then the shares {zi}ρ(i)=0∪xρ(i)=1

perfectly hide z.

Definition A.5 (Linear Secret Sharing Scheme (LSSS) [Sha79]). A secret sharing scheme that is
said to be linear if Share is a linear function of the secret z and randomness over Zq, and Reconstruct
computes a linear function of the shares over Zq, that is, z =

∑
ρ(i)=0∪xρ(i)=1wizi for some constants

wi ∈ Zq.

A.5 MA-ABE

An MA-ABE scheme MA-ABE = (GlobalSetup,AuthSetup,KGen,Enc,Dec) consists of five algorithms
whose syntax is given below. Let AU denote the authority universe. Let GID denote the universe
of global identifiers of the users. Let M denote the message space. We define MA-ABE for access
policies specified by an access structure A defined on a set U ⊆ AU . We assume that each authority
control one attribute, and hence we would use the terms “authority” and “attribute” interchangably.
This definition naturally generalizes to the situation in which each authority can potentially control
an arbitrary (bounded or unbounded) number of attributes (see [LW11a,RW15]). Our definition
below follows [DKW23].

• gp← GlobalSetup(1λ): The global setup algorithm takes in the security parameter λ in unary
representation and outputs the global public parameters gp for the system. We assume that
gp includes the descriptions of the universe of attribute authorities AU and universe of the
global identifiers of the users GID. Note that both AU and GID are given by {0, 1}λ in case
there is no bound on the number of authorities and users in the system.

• (pki,mski) ← AuthSetup(gp, i): The authority i ∈ AU calls the authority setup algorithm
during its initialization with the global parameters gp as input and receives back its public
and master secret key pair pki, mski.

• ski,GID ← KGen(gp,mski,GID): The key generation algorithm takes as input the global pa-
rameters gp, a master secret key mski of an authority i ∈ AU , and a user’s global identifier
GID ∈ GID. It outputs a secret key ski,GID for the user.

• ct← Enc(gp,msg,A, {pki}i∈U ): The encryption algorithm takes in the global parameters gp,
a message msg ∈ M, an access policy A defined on a set U ⊆ AU , and the set {pki}i∈U of
public keys for all the authorities in the set U . It outputs a ciphertext ct. We assume that
the ciphertext implicitly contains A, U .

• msg′ ← Dec(gp, ct, {ski,GID}i∈S): The decryption algorithm takes in the global parameters
gp, a ciphertext ct generated with respect to some access policy A, and a collection of keys
{ski,GID}i∈S corresponding to attribute-user ID pairs {(i,GID)}i∈S possessed by a user with
global identifier GID. It outputs a message msg′ when the collection of attributes associated
with the secret keys satisfy the access policy A. Otherwise, decryption fails.
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Correctness. An MA-ABE scheme is said to be correct if for every λ ∈ N, msg ∈M, GID ∈ GID,
every access policy A defined on a set U ⊆ AU , and every subset of attributes S ⊆ U satisfying the
access structure (i.e., S ∈ A), it holds that

Pr

msg′ = msg :

gp← GlobalSetup(1λ),
∀i ∈ U : (pki,mski)← AuthSetup(gp, i)
∀i ∈ S : ski,GID ← KGen(gp,mski,GID)

ct← Enc(gp,msg,A, {pki}i∈U )
msg′ ← Dec(gp, ct, {ski,GID}i∈S)

 = 1.

Fully Adaptive Security. We define the fully adaptive (chosen-plaintext) security for a decen-
tralized MA-ABE scheme, namely, we consider a security game where there could be adaptive secret
key queries, adaptive authority corruption queries, and adaptive challenge ciphertext query. This is
formalized in the following game between a challenger and an adversary. Note that we will consider
two types of authority public keys, those which are honestly generated by the challenger and those
which are supplied by the adversary itself where the former type of authority keys can be corrupted
by the adversary at any point of time during the game and the latter type of authority keys can
potentially be malformed.

The game MA-ABEfully-adaptive
A (λ) consists of the following phases:

Global Setup: The challenger runs GlobalSetup to generate global public parameters gp and gives
it to the adversary.

Query Phase 1: The adversary is allowed to adaptively make a polynomial number of queries of
the following types:

• Authority Setup Queries: The adversary request to set up an authority i ∈ AU of its choice.
If an authority setup query for the same authority i has already been queried before, the
challenger aborts. Otherwise, the challenger runs AuthSetup to create a public/master key
pair (pki,mski) for the authority i. The challenger provides pki to the adversary and stores
(pki,mski). Note that the challenger does not return the generated public/master key pair to
the adversary.

• Secret Key Queries: The adversary makes a secret key query by submitting a pair (i,GID) to
the challenger, where GID ∈ GID is a global identifier and i ∈ AU is an attribute authority. If
an authority setup query for the authority i has not been made already, the challenger aborts.
Otherwise, the challenger runs KGen using the public/master key pair it already created in
response to authority setup query for i and generates a secret key ski,GID. The challenger
provides ski,GID to the adversary.

• Authority Master Key Queries: The adversary requests the master secret key of an authority
i ∈ AU to the challenger. If an authority setup query for the authority i has not been made
previously, the challenger aborts. Otherwise, the challenger provides the adversary the master
secret key mski for authority i it created in response to the authority setup query for i.

Challenge Phase: The adversary submits two messages, msg0,msg1 ∈M and an access policy A
defined on a set U ⊆ AU . The adversary also submits the public keys {pki} for a subset of attribute
authorities appearing in the access structure A. The authority public keys {pki} supplied by the
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adversary can potentially be malformed, i.e., can fall outside the range of AuthSetup. The access
structure A and the authority public keys {pki} must satisfy the following constraints.

1. Let UA ⊆ U denote the set of attribute authorities for which the adversary supplied the
authority public keys {pki}. Also let UB denote the set of attribute authorities for which the
challenger created the master public key pairs in response to the authority setup query of the
adversary so far. Then, it is required that UA ∩ UB = ∅.

2. Let S denote the subset of U containing the authorities in UA plus the authorities for which
the adversary made a master key query so far. For each global identifier GID ∈ GID, let SGID

denote the subset of U containing authorities i such that the adversary queried a secret key
for the pair (i,GID). For each GID ∈ GID, it is required that S ∪ SGID /∈ A.

The challenger flips a random coin b
$←{0, 1} and generates a ciphertext ct by running the Enc

algorithm that encrypts msgb under the access structure (M, ρ). The challenger sends ct to the
adversary.

Query Phase 2: The adversary is allowed to make all types of queries as in Query Phase 1 as
long as they do not violate the constraints Properties 1 and 2 above.

Guess: The adversary must submit a guess b′ ∈ {0, 1} for b. The adversary wins if b = b′.
The game is formally defined in Figure 3. The advantage of an adversary A in this game is

defined as
AdvMA-ABE,fully-adaptive

A (λ) = |Pr[MA-ABEfully-adaptive
A (λ) = 1]− 1/2|.

Definition A.6 (Fully adaptive security of MA-ABE). An MA-ABE scheme for access structure A
is fully adaptively secure if for any p.p.t. adversary A there exists a negligible function negl(·) such
that for all λ ∈ N, we have AdvMA-ABE,fully-adaptive

A (λ) ≤ negl(λ).

Remark A.7 (Fully adaptive security of MA-ABE in the Random Oracle Model). : Similar
to [LW11a,RW15,OT20b], we additionally consider the aforementioned notion of fully adaptive
security in the random oracle model. In this context, we assume a global hash function H published
as part of the global public parameters and accessible by all the parties in the system, including the
adversary. In the security proof, we model H as a random function and allow it to be programmed
by the challenger. Therefore, in the fully adaptive security game described above, we further let the
adversary adaptively submit H-oracle queries to the challenger, along with the key queries it makes
both before and after the challenge ciphertext query.

A.6 Assumptions

Assumption A.8 (Matrix Decisional Diffie Hellman Assumption: MDDHGi
k,ℓ [EHK+13]). Let

ℓ > k > 1. We say that the MDDHGi
kℓ

assumption holds with respect to PGGen if for all p.p.t.
adversary A and for all i ∈ {1, 2, T}, the following advantage is negligible in λ.

Adv
MDDH

Gi
k,ℓ

A (λ) := |Pr[A(D, Jt0Ki) = 1]− Pr[A(D, Jt1Ki) = 1]|

where PG := (G1,G2,GT , e, q, g1, g2, gT )← PGGen(1λ), D = (PG, JXKi), t0 = Xu, t1
$←Zℓ

q such that

X
$←Zℓ×k

q , u
$←Zk

q .
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Game MA-ABEfully-adaptive
A (λ)

1 : gp← GlobalSetup(1λ)

2 : UB := ∅, UC := ∅
3 : SampledKeyMap := ∅,GAMap := ∅
4 : chalFlag := false

5 : (msg0,msg1,A, U, {pki}i∈UA)←
AAuthSetup(·),KGen(·,·),Corrupt(·)(gp)

6 : If ¬Admissible(UB, UC ,GAMap):

ret 0

7 : b
$←{0, 1}

8 : ct← Enc(gp,msgb,A, {pki}i∈UA∪UB)

9 : chalFlag := true

10 : b′ ← AAuthSetup(·),KGen(·,·),Corrupt(·)(ct)

11 : ret 1 if b = b′, else 0

Function Admissible(UB, UC ,GAMap):

1 : If UA ∩ UB ̸= ∅: ret false

2 : Let S := UA ∪ UC

3 : ∀GID ∈ GAMap:

let SGID := U ∩ GAMap[GID]

4 : If ∃GID ∈ GAMap s.t. S ∪ SGID ∈ A:
ret false

5 : ret true

Oracle AuthSetup(i):

1 : If i ∈ UB: ret ⊥
2 : UB := UB ∪ {i}
3 : If chalFlag ∩
¬Admissible(UB, UC ,GAMap): ret ⊥

4 : (pki,mski)← AuthSetup(gp, i)

5 : SampledKeyMap[i] := (pki,mski)

6 : ret pki
Oracle KGen(i,GID):

1 : If i /∈ UB: ret ⊥
2 : GAMap[GID] := GAMap[GID] ∪ {i}
3 : If chalFlag ∩
¬Admissible(UB, UC ,GAMap): ret ⊥

4 : (·,mski) = SampledKeyMap[i]

5 : ski,GID ← KGen(gp,mski,GID)

6 : ret ski,GID

Oracle Corrupt(i):

1 : If i /∈ UB: ret ⊥
2 : UC := UC ∪ {i}
3 : If chalFlag ∩
¬Admissible(UB, UC ,GAMap): ret ⊥

4 : (·,mski) = SampledKeyMap[i]

5 : ret mski

Figure 3: Security game for MA-ABE.

When ℓ = k + 1, we simply call it k-MDDH assumption over group Gi.
Next, we describe some lemmas that are prime-order analogues of Subgroup Decision assumptions

over composite-order bilinear groups. We describe these with respect to following set of matrices:
Fix parameters ℓ1, ℓ2, ℓ3, ℓW . Pick random

B1
$←Zℓ×ℓ1

q ,B2
$←Zℓ×ℓ2

q ,B3
$←Zℓ×ℓ3

q ,

where ℓ := ℓ1 + ℓ2 + ℓ3. Let (B∗
1,B

∗
2,B

∗
3)

T = (B1,B2,B3)
−1 so that BT

i B
∗
i = I (known as

non-degeneracy) and BT
i B

∗
j = 0 if i ̸= j (known as orthogonality).

Assumption A.9 (Subgroup Decision Assumption SDG2
Bi→Bi,Bj

for i, j ∈ {1, 2, 3} [CGKW18,

GHKW16,GDCC16]). For all i, j ∈ {1, 2, 3} such that i ̸= j, the SDG2
Bi→Bi,Bj

assumptions states

that for any p.p.t. adversary A, there exists a negligible function negl(·) such that for any security
parameter λ ∈ N and for all k ∈ {1, 2, 3} \ {i, j},

Adv
SD

G2
Bi→Bi,Bj

A (λ) := |Pr[A(D, Jt0K2) = 1]− Pr[A(D, Jt1K2) = 1]| ≤ negl(λ)
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where

PG := (G1,G2,GT , e, q, g1, g2, gT )← PGGen(1λ),

D = (PG, JB1K2, JB2K2, JB3K2, basis(B∗
i ), basis(B

∗
k), basis(B

∗
i ,B

∗
j )),

t0 ← span(Bi), t1 ← span(Bi,Bj).

B MA-ABE for monotone BSP from prime-order groups: Ap-
pendix

B.1 Correctness of MA-ABE for monotone BSP construction

For the MA-ABE for monotone BSP construction in Figure 1, observe that dx can be simplified as
follows:

dx = e(c2,x, JkK2) ·
e(c3,x,H1(GID))

e(c1,x, skρ(x),GID)

= J(λx + sTxAVρ(x))k+ (ωx + sTxAUρ(x))hGID − (sTxA)(Vρ(x)k+Uρ(x)hGID)KT
= Jλxk+ ωxhGIDKT
= JMx(Tk+WhGID)KT .

Then, d can be simplified as follows:

d =
∏

ρ(x)∈S

dwx
x

= J
∑

ρ(x)∈S

wxMx(Tk+WhGID)KT

= J(1, 0, . . . , 0)(Tk+WhGID)KT
= JtTk+ 0ThGIDKT (because first rows of T and W are tT and 0T )

= JtTkKT .

Thus, it follows that c0/d = msg. Thus, correctness holds.

B.2 Missing Proofs from Section 4.1

Before we present the missing proofs, we first define the Q-fold MDDH assumption and comment on
the random self-reductibility of the MDDH assumption since these will help simplify the proofs. The
Q-fold MDDH assumption is considers Q many independent instances of the MDDH assumption.
While using a standard hybrid argument, it can be shown that this is equivalent to the MDDH
assumption with a loss of Q in the reduction, but random self-reducibility allows us to give a tighter
bound when Q > ℓ− k that we state below.

Assumption B.1 (Q-fold MDDH Assumption: MDDHGi
k,ℓ,Q [EHK+13]). We say that the MDDHGi

kℓ
assumption holds with respect to PGGen if for all p.p.t. adversary A and for all i ∈ {1, 2, T}, the
following advantage is negligible in λ.

Adv
MDDH

Gi
k,ℓ,Q

A (λ) := |Pr[A(D, JT0Ki) = 1]− Pr[A(D, JT1Ki) = 1]|
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where

PG := (G1,G2,GT , e, q, g1, g2, gT )← PGGen(1λ),

D = (PG, JXKi),

T0 = XU,T1
$←Zℓ×Q

q

such that X
$←Zℓ×k

q , U
$←Zk×Q

p .

Lemma B.2 (Random Self-reducibility of MDDH [EHK+13]). For all i ∈ {1, 2, T}, MDDHGi
k,ℓ

assumption is random self-reducible. Concretely, for any Q,

Adv
MDDH

Gi
k,ℓ,Q

A (λ) ≤

Q · Adv
MDDH

Gi
k,ℓ

A (λ) , if 1 ≤ Q ≤ ℓ− k

(ℓ− k) · Adv
MDDH

Gi
k,ℓ

A (λ) + 1
q−1 , if Q > ℓ− k

,

and the probability is taken over PG := (G1,G2,GT , e, q, g1, g2, gT ) ← PGGen(1λ), X
$←Zℓ×k

q ,

U
$←Zk×Q

p , T1
$←Zℓ×Q

q and the random coins of A.

Proof of Claim 4.2. HybReal and Hyb′Real are identically distributed because the distribution of
gp in GlobalSetup and GlobalSetup∗ is the same.
Proof of Claim 4.3. We show that if there exists a PPT adversary A that can distinguish
between Hyb′Real and Hyb0, then we can use A to construct a PPT adversary B that can break the
MDDHG2

k,2k+1,Q assumption in G2, where Q is the number of queries made by A to the H1 oracle.

Let B be an adversary that is given aMDDHG2
k,2k+1,Q challenge by the challenger C: (G1,G2,GT , e,

q, g1, g2, gT , JB1K2, JHK2) where B1
$←Z(2k+1)×k

q and H ∈ Z(2k+1)×Q
q . Here C samples b

$←{0, 1} and
sets H = B1Z if b = 0 and H

$←Z(2k+1)×Q
q if b = 1. The goal of B is to output a bit b′ and B wins if

b′ = b.
B will internally run A as follows. For simulating the view to A, B will run exactly the same as

Hyb′Real, except the following modifications:

• B will use JB1K2 obtained from the MDDH challenger C instead of computing it as in
GlobalSetup∗ in Hyb′Real. While B can sample B2 and B3 on its own as in Hyb′Real, it will not
be able to compute B∗

1,B
∗
2,B

∗
3 as in GlobalSetup∗ since it does not know the value of B1 in

the clear. But this is okay since these values are not needed to simulate the view of A.

• B will embed the challenge JHK2 in the H1 oracle queries from A as follows. B parses
(Jh1K2, . . . , JhQK2) = JHK2, where JhjK ∈ G2k+1

2 for all j ∈ [Q]. For the jth query to the H1

oracle, B programs H1(GIDj) := JhjK2.

Observe that when C chooses b = 0, that is, H = B1Z, then B is able to simulate the view of A
in Hyb0. Similarly, when C chooses b = 1, that is, H

$←Z(2k+1)×Q
q , then B is able to simulate the

view of A in Hyb′Real. Thus, if A can distinguish between Hyb′Real and Hyb0, then B can distinguish
between the two cases of the MDDH challenge.

Proof of Claim 4.4. Recall that the only difference between Hyb0 and Hyb1 is in how the
challenge ciphertext is generated. Specifically, for all rows x ∈ UA, the two hybrids differ in how the

vector cx ∈ Zk+1
q is computed. In Hyb0, c

T
x := sTxA1, or equivalently, cx = AT

1 sx where sx
$←Zk

q is a

random vector. In Hyb1, cx
$←Zk+1

q is a random vector.
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We show that if there exists a PPT adversary A that can distinguish between Hyb0 and Hyb1,
then we can use A to construct a PPT adversary B that can break the MDDHG1

k,k+1,|UA| assumption

in G1, where UA denotes the subset of rows of challenge access policy matrix M that are honestly
generated by the challenger.

Let B be an adversary that is given aMDDHG1

k,k+1,|UA| challenge by the challenger C: (G1,G2,GT , e,

q, g1, g2, gT , JAT
1 K1, JCK1) where AT

1
$←Z(k+1)×k

q and C ∈ Z(k+1)×|UA|
q . Here C samples b

$←{0, 1} and
sets C = AT

1 Z if b = 0 and C
$←Z(k+1)×|UA|

q if b = 1. The goal of B is to output a bit b′ and B wins
if b′ = b. B will internally run A as follows. For simulating the view to A, B will run exactly the
same as Hyb0, except the following modifications:

• B will use JA1K1 obtained from the MDDH challenger C instead of computing it as in
GlobalSetup∗ in Hyb0. While B can sample A2 on its own as in Hyb0, it will not be able to
compute A∗

1,A
∗
2 as in GlobalSetup∗ since it does not know the value of A1 in the clear. But

this is okay since these values are not needed to simulate the view of A.

• B will embed the challenge JCK1 in the challege ciphertext query (msg0,msg1, (M, ρ), {pkx}x∈UA)
as follows: B parses (Jc1K1, . . . , Jc|UA|K1) = JCK1, where JcxK1 ∈ Gk+1

1 for all x ∈ [|UA|]. With-

out loss of generality suppose that UA = {1, 2, . . . , |UA|}. Then, for all x ∈ UA, B uses the
challenge JcxK1 to compute the challenge ciphertext components c1,x, c2,x, c3,x as follows:

c1,x := JcTx K1,

c2,x := JλxK1 · (JcTx K1 ⊙Vρ(x)),

c3,x := JωxK1 · (JcTx K1 ⊙Uρ(x)).

Observe that when C chooses b = 0, that is, C = AT
1 Z, then B is able to simulate the view of A in

Hyb0. Similarly, when C chooses b = 1, that is, C
$←Z(2k+1)×Q

q , then B is able to simulate the view
of A in Hyb1. Thus, if A can distinguish between Hyb0 and Hyb1, then B can distinguish between
the two cases of the MDDH challenge.

Proof of Claim 4.5. Observe that the only difference between Hyb1 and Hyb2 is that in ciphertext

component c3,x for all x ∈ [n]: c3,x contains JωxK1, where ωx is a secret share of 0T ∈ Z1×(2k+1)
q in

Hyb1, but it is a secret share of γB∗
3
T in Hyb2. Therefore, to prove that the hybrids are statistically

indistinguishable, we will argue that γB∗
3
T is information theoretically hidden from the adversary A

in Hyb2.
Suppose the challenge access policy (M, ρ) is defined over a set of authorities U ⊆ AU , that is,

ρ : [n]→ U . Recall from Appendix A.5 that the game condition requires that UA ∩ UB = ∅ and for
each GID ∈ GID, it is required that S ∪ SGID /∈ (M, ρ), where

• UA ⊆ U denotes the set of attribute authorities for which the adversary supplied the authority
public keys {pki},

• UB denote the set of attribute authorities for which the challenger created the master public
key pairs in response to the authority setup query of the adversary so far,

• S denotes the subset of U containing the authorities in UA plus the authorities for which
the adversary made a master key query so far (in other words, S denotes the set of corrupt
authorities),
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• for each global identifier GID ∈ GID, SGID denotes the subset of U containing authorities i
such that the adversary queried a secret key for the pair (i,GID).

To show that γB∗
3
T is information theoretically hidden from the adversary A in Hyb2, we only

need to rely on S /∈ (M, ρ) which is implied by the second game condition. Here, S /∈ (M, ρ) is a
shorthand for (1, 0, . . . , 0) /∈ rowSpan({Mx}ρ(x)∈S).

Note that the vectors MxW for all rows x of the challenge access matrix M labeled by corrupt
authorities (that is, ρ(x) ∈ S) are information theoretically revealed to A. However, by the game
condition the subspace spanned by those rows does not include the vector (1, 0, . . . , 0). This means
that there must exist some vector u ∈ Zℓ

q such that u is orthogonal to all these rows of M (that
is, Mxu = 0) but is not orthogonal to (1, 0, . . . , 0), that is, the first entry of u must be non-zero.

We consider a basis U of Zℓ
q involving the vector u and write W =

(
γB∗

3
T

Wbot

)
= Ũ+ ubT for some

b ∈ Z2k+1
q and some Ũ ∈ Zℓ×(2k+1)

q such that each column of Ũ lies in the column span of U \ u.
Hence, Ũ reveals no information about b. Now since the first entry of u is non-zero, it follows
that the first row of W, that is, γB∗

3
T , depends on b. But MxW for all the corrupted rows of M

contains no information about b since u is orthogonal to all these rows. Thus, it follows that these
rows do not leak information of γB∗

3
T .

Therefore, the only possible way for A to get information about γB∗
3
T is through the ciphertext

components c3,x corresponding to the uncorrupted rows of M. However, for each such row x, A can
only recover cTx , MxW+ cTxUρ(x) information theoretically. Without loss of generality, we can com-

pute Uρ(x) := Uρ(x),1B
∗
1
T +Uρ(x),2B

∗
2
T +Uρ(x),3B

∗
3
T , where Uρ(x),1

$←Z(k+1)×k
q ,Uρ(x),2

$←Z(k+1)×k
q ,

and Uρ(x),3
$←Z(k+1)×1

q . Let the first entry of Mx be mx, that is, Mx = (mx, . . .). Then, observe
that we can write

Mx

(
γB∗

3
T

Wbot

)
+ cTxUρ(x) = Mx

(
0

Wbot

)
+Mx

(
γB∗

3
T

0

)
+ cTxUρ(x)

= Mx

(
0

Wbot

)
+ (mx, . . .)

(
γB∗

3
T

0

)
+ cTxUρ(x)

= Mx

(
0

Wbot

)
+mxγB

∗
3
T + cTxUρ(x)

= Mx

(
0

Wbot

)
+ (mxγ + cTxUρ(x),3)B

∗
3
T + cTxUρ(x),1B

∗
1
T + cTxUρ(x),2B

∗
2
T

≡Mx

(
0

Wbot

)
+ (cTxU

′
ρ(x),3)B

∗
3
T + cTxUρ(x),1B

∗
1
T + cTxUρ(x),2B

∗
2
T

where we can write U′
ρ(x),3 = Uρ(x),3 + ∆ such that mxγ = cTx∆. Therefore, to complete the

proof, it suffices to argue that Uρ(x),3 and U′
ρ(x),3 are identically distributed. We show this next.

Observe that since ρ is injective, hence it follows that Uρ(x) is a fresh random matrix and the only
other place it appears is in secret keys skρ(x),GID. We argue that skρ(x),GID information theoretically
leaks no information about Uρ(x),3 and hence Uρ(x),3 and U′

ρ(x),3 are identically distributed. To
see this, observe that skρ(x),GID information theoretically reveals Vρ(x)k + Uρ(x)B1hGID, where

Uρ(x)B1hGID = Uρ(x),1hGID since B∗
1
TB1 = I, B∗

2
TB1 = 0 and B∗

3
TB1 = 0, thus no information

about Uρ(x),3 is revealed.
To complete the proof, we argue that substituting Uρ(x),3 with U′

ρ(x),3 (as described above) for

all rows x of matrix M for which the challenger sampled the authority keys (that is, uncorrupted
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rows plus the rows for which the adversary queried the master secret key) allows us to move from
Hyb2 to Hyb1. We have already argued that this substitution does not change the distribution of the
secret keys and ciphertext obtained by the adversary A for the uncorrupted rows of M. For the case
of rows x of M for which the adversary queried the master secret key, the adversary additionally

learns U′
ρ(x),3 and Mx

(
0T

Wbot

)
in Hyb1 and Uρ(x),3 and Mx

(
γB∗

3
T

Wbot

)
in Hyb2 and we argue that

this does not help the adversary A to distinguish between Hyb1 and Hyb2. This is because Uρ(x),3

and U′
ρ(x),3 are identically distributed and Mx

(
γB∗

3
T

Wbot

)
= Mx

(
0T

Wbot

)
due to the game condition.

Therefore, it follows that Hyb1 and Hyb2 are statistically indistinguishable. This completes the
proof of Claim 4.5.
Proof of Claim 4.6.

Suppose towards a contradiction that there exists a p.p.t. adversary A that distinguishes its
view in Hyb3,j−1 and Hyb3,j,1 with a noticeable advantage ϵ. Then we show how to construct an

adversary B using A that breaks the SDG2
B1→B1,B2

assumption with noticeable advantage ϵ. Suppose

that the SDG2
B1→B1,B2

challenger is C. Then, recall that B obtains (D, JhK2) from C and B’s goal is
to distinguish whether h ∈ span(B1) or h ∈ span(B1,B2), where

PG := (G1,G2,GT , e, q, g1, g2, gT )← PGGen(1λ),

B1
$←Z(2k+1)×k

q ,B2
$←Z(2k+1)×k

q ,B3
$←Z(2k+1)×1

q ,

(B∗
1,B

∗
2,B

∗
3)

T = (B1,B2,B3)
−1,

D = (PG, JB1K2, JB2K2, JB3K2, basis(B∗
1), basis(B

∗
3), basis(B

∗
1,B

∗
2)).

B accomplishes this by invoking the adversary A for distinguishing Hyb3,j−1 and Hyb3,j,1. Towards
this, B plays the role of A’s challenger in its dinstinguishing game as follows: instead of running
GlobalSetup∗ on its own completely, it uses JB1K2, JB2K2, JB3K2, basis(B∗

1), basis(B
∗
3), basis(B

∗
1,B

∗
2)

obtained from C and samples A1,A2,A
∗
1,A

∗
2 on its own as in GlobalSetup∗. Consequently, gp is

identically distributed as in GlobalSetup∗. While B does not know B1,B2,B3,B
∗
1,B

∗
2,B

∗
3 completely

now, we show that the information obtained from C in this regard is sufficient for B to perfectly
simulate the view for A. This information shows up in two places in the game between B and A:

• When computing challenge ciphertext, B needs to compute matrix W whose first row is γB∗
3
T .

Observe that since B∗
3 is a vector, hence basis(B∗

3) = δB∗
3 for some non-zero δ ∈ Zq. Therefore,

B can sample γ′
$←Zq and set the first row of W to be γ′basis(B∗

3)
T . This perfectly simulates

γB∗
3
T as it implicitly sets γ = γ′δ and γ is uniform random since γ′ is uniform random.

• For computing H1 on some input GIDindex, B can use JB1K2, JB3K2 and JhK2 obtained from C
as follows:

hGIDindex

$←Zk
q ,H1(GIDindex) :=


(JB1K2 ⊙ hGIDindex

) · JB3K2 , if index ≤ j − 1

JhK2 , if index = j

JB1K2 ⊙ hGIDindex
, if index > j

.

Therefore, it follows that when h ∈ span(B1), B perfectly simulates Hyb3,j−1 to A and when
h ∈ span(B1,B2), B perfectly simulates Hyb3,j,1 to A. Therefore, B’s winning advantage against
C is same as A’s winning advantage ϵ against B. But this contradicts the assumption that such a
p.p.t. adversary B cannot exist. This completes the proof of Claim 4.6.
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Proof of Claim 4.7. Observe that the only difference between Hyb3,j,1 and Hyb′3,j,1 is
that in ciphertext component c3,x for all x ∈ [n]: c3,x contains JωxK1, where ωx is a secret share of

γB∗
3
T ∈ Z1×(2k+1)

q in Hyb3,j,1, but it is a secret share of (B∗
2δ + γB∗

3)
T in Hyb′3,j,1. Therefore, to

prove that the hybrids are statistically indistinguishable, we will argue that B∗
2δ is information

theoretically hidden to the adversary A in Hyb′3,j,1.
Suppose the challenge access policy (M, ρ) is defined over a set of authorities U ⊆ AU , that is,

ρ : [n]→ U . Recall from Appendix A.5 that the game condition requires that UA ∩ UB = ∅ and for
each GID ∈ GID, it is required that S ∪ SGID /∈ (M, ρ), where

• UA ⊆ U denotes the set of attribute authorities for which the adversary supplied the authority
public keys {pki},

• UB denote the set of attribute authorities for which the challenger created the master public
key pairs in response to the authority setup query of the adversary so far,

• S denotes the subset of U containing the authorities in UA plus the authorities for which
the adversary made a master key query so far (in other words, S denotes the set of corrupt
authorities),

• for each global identifier GID ∈ GID, SGID denotes the subset of U containing authorities i
such that the adversary queried a secret key for the pair (i,GID).

To show that B∗
2δ is information theoretically hidden from the adversary A in Hyb′3,j,1, we only

need to rely on the second game condition and that too only for the jth GID, that is, we will
use the fact that S ∪ SGIDj

/∈ (M, ρ). Here, S ∪ SGIDj
/∈ (M, ρ) is a shorthand for (1, 0, . . . , 0) /∈

rowSpan({Mx}ρ(x)∈S∪SGIDj
).

Note that the vectors MxW for all rows x of the challenge access matrix M labeled by corrupt
authorities (that is, ρ(x) ∈ S) are information theoretically revealed to A. However, by the game
condition the subspace spanned by those rows does not include the vector (1, 0, . . . , 0). This means
that there must exist some vector u ∈ Zℓ

q such that u is orthogonal to all these rows of M (that is
Mxu = 0) but is not orthogonal to (1, 0, . . . , 0), that is, the first entry of u must be non-zero. We

consider a basis U of Zℓ
q involving the vector u and write W =

(
(B∗

2δ + γB∗
3)

T

Wbot

)
= Ũ+ ubT for

some b ∈ Z2k+1
q and some Ũ ∈ Zℓ×(2k+1)

q such that each column of Ũ lies in the column span of

U \u. Hence, Ũ reveals no information about b. Now since the first entry of u is non-zero, it follows
that the first row of W, that is, (B∗

2δ + γB∗
3)

T , depends on b. But MxW for all the corrupted
rows of M contains no information about b since u is orthogonal to all these rows. Thus, it follows
that these rows do not leak information about (B∗

2δ + γB∗
3)

T .
Therefore, the only possible way for A to get information about B∗

2δ is through the ciphertext
components c3,x corresponding to the uncorrupted rows of M. However, for each such row x, A
can only recover cTx , MxW+ cTxUρ(x) information theoretically. For the uncorrupted rows x, we
analyze two cases:

• x such that ρ(x) ∈ SGIDj
: These are uncorrupted rows of M labeled by authorities who issued

key for GIDj . From the game condition, it follows that (1, 0, . . . , 0) /∈ rowSpan({Mx}ρ(x)∈SGIDj
).

Therefore, using the same argument as for the analysis for rows corresponding to corrupt
authorities above, it follows that MxW contains no information about (B∗

2δ + γB∗
3)

T . Hence,
cTx , MxW + cTxUρ(x) reveals no information about (B∗

2δ + γB∗
3)

T to the adversary A.
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• x such that ρ(x) ∈ U \ (S ∪ SGIDj
): These are uncorrupted rows of M labeled by au-

thorities who are neither corrupt nor issued key for GIDj . The game condition does not
apply for these rows and the analysis requires more care as described next. Without
loss of generality, we can compute Uρ(x) := Uρ(x),1B

∗
1
T +Uρ(x),2B

∗
2
T +Uρ(x),3B

∗
3
T , where

Uρ(x),1
$←Z(k+1)×k

q ,Uρ(x),2
$←Z(k+1)×k

q , and Uρ(x),3
$←Z(k+1)×1

q . Let the first entry of Mx be mx,
that is, Mx = (mx, . . .). Then, observe that we can write

Mx

(
(B∗

2δ + γB∗
3)

T

Wbot

)
+ cTxUρ(x)

= Mx

(
γB∗

3
T

Wbot

)
+ (mx, . . .)

(
(B∗

2δ)
T

0

)
+ cTxUρ(x)

= Mx

(
γB∗

3
T

Wbot

)
+mx(B

∗
2δ)

T + cTxUρ(x)

= Mx

(
γB∗

3
T

Wbot

)
+ (mxδ

T + cTxUρ(x),2)B
∗
2
T + cTx (Uρ(x),1B

∗
1
T +Uρ(x),3B

∗
3
T )

= Mx

(
γB∗

3
T

Wbot

)
+ (cTxU

′
ρ(x),2)B

∗
2
T + cTx (Uρ(x),1B

∗
1
T +Uρ(x),3B

∗
3
T )

where we can write U′
ρ(x),2 = Uρ(x),2 +∆ such that mxδ

T = cTx∆. Therefore, to complete the

proof, it suffices to argue that Uρ(x),2 and U′
ρ(x),2 are identically distributed. We show this

next.

Observe that since ρ is injective, hence it follows that Uρ(x) is a fresh random matrix and
the only other place it appears is in secret keys skρ(x),GIDindex

. We argue that skρ(x),GIDindex

information theoretically reveals no information about Uρ(x),2 to the adversary A and hence
Uρ(x),2 and U′

ρ(x),2 are identically distributed. To see this, observe that the Uρ(x)-dependent

term of skρ(x),GIDindex
is of the form Uρ(x)⊙H1(GIDindex), where H1(GIDindex) is of the following

form depending on index: JB1hGIDindex
+B3K2 if index ≤ j − 1, JB1hGIDindex

+B2h
′
GIDindex

K2 if
index = j, and JB1hGIDindex

K2 if index > j. We analyze the three cases separately:

– Case 1: index < j. Observe that the Uρ(x)-dependent term of skρ(x),GIDindex
information

theoretically reveals Uρ(x),1hGIDindex
+Uρ(x),3 since B∗

2
TB1 = 0 and B∗

2
TB3 = 0.

– Case 2: index = j. This case requires no analysis since adversary A never sees secret
keys skρ(x),GIDj

. This is due to the definition of set SGIDj
and the fact that we are only

considering x such that ρ(x) ∈ U \ (S ∪ SGIDj
).

– Case 3: index > j. Observe that the Uρ(x)-dependent term of skρ(x),GIDindex
information

theoretically reveals Uρ(x),1hGIDindex
since B∗

2
TB1 = 0.

Hence, it follows that skρ(x),GIDindex
information theoretically reveals no information about

Uρ(x),2, so Uρ(x) and U′
ρ(x) are identically distributed. Thus, for all x such that ρ(x) ∈

U \ (S ∪ SGIDj
), ciphertext components c3,x reveal no information about B∗

2δ to the adversary
A.

To complete the proof, we argue that substituting Uρ(x),2 with U′
ρ(x),2 (as described above) for all

rows x of matrix M for which the challenger sampled the authority keys (that is, uncorrupted rows
plus the rows for which the adversary queried the master secret key) allows us to move from Hyb′3,j,1
to Hyb3,j,1. We have already argued that this substitution does not change the distribution of the
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secret keys and ciphertext obtained by the adversary A for the uncorrupted rows of M. For the case
of rows x of M for which the adversary queried the master secret key, the adversary additionally

learns U′
ρ(x),2 and Mx

(
γB∗

3
T

Wbot

)
in Hyb3,j,1 and Uρ(x),2 and Mx

(
(B∗

2δ + γB∗
3)

T

Wbot

)
in Hyb′3,j,1 and

we argue that this does not help the adversary A to distinguish between Hyb3,j,1 and Hyb′3,j,1. This

is because Uρ(x),2 and U′
ρ(x),2 are identically distributed and Mx

(
γB∗

3
T

Wbot

)
= Mx

(
(B∗

2δ + γB∗
3)

T

Wbot

)
due to the game condition.

From the case analysis above, it follows that Hyb3,j,1 and Hyb′3,j,1 are statistically indistinguishable.
This completes the proof of Claim 4.7.

Proof of Claim 4.8. Similar to proof of Claim 4.6.
Proof of Claim 4.9. Similar to the proof of Claim 4.5.
Proof of Claim 4.10. Similar to proof of Claim 4.6.
Proof of Claim 4.13. This holds since Hyb5 contains no information about msg0 and msg1.

C MA-ABE for NC1 with Multi-Use Security: Appendix

C.1 Core 1-ABE

Definition C.1 (Core 1-ABE Games G1-ABE,0
A , G1-ABE,1

A [KW19]). For a stateful adversary A, for
b ∈ {0, 1}, define the game G1-ABE,b

A as

ui ← CPA.Setup(1λ),

(µ(0), µ(1))
$←Zq,

b′ ← AOX(·),OE(·,·),OF (·)(µ(0)),
ret b′

where OF (f) = ct := {sk′f = {µj}ρ′(j)=0 ∪ {CPA.Enc(uρ′(j), µj)}ρ′(j) ̸=0}, where ({µj}, ρ′) ←
LSSS.Share(f, µ(b)), and OX(x) := (ct′x = {ui}xi=1), and OE(i,m) := CPA.Enc(ui,m), with the
restriction that (i) only one query is made to each OF (·) and OX(·), and (ii) the queries f and x to
OF (·, ·) and OX(·) respectively satisfy f(x) = 0.

To be clear, the b in the game G1-ABE,b
A affects only the implementation of the OF (·) oracle

(where µ(b) is shared), and A is given µ(0) as input in both games.
The CPA-secure symmetric encryption scheme in [KW19] is constructed as follows:

CPA.Setup(1λ):

1 : Run G← G(1λ). Sample u
$←Zk

q . Output sk := u.

CPA.Enc(sk, JmK):

1 : Sample r
$←Zk

q . Output ct := (ct0 = JrK, ct1 = Jm+ uT rK).
CPA.Dec(sk, ct):

1 : Output ct1/(sk
T ⊙ ct0).

Figure 4: CPA-secure symmetric encryption scheme in [KW19]
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Lemma C.2 (Core 1-ABE security [KW19]). For the Core 1-ABE component of Definition C.1
implemented with the CPA-secure symmetric encryption scheme (CPA.Setup,CPA.Enc,CPA.Dec)
from Figure 4, the following is a negligible function in λ when the policy class is NC1:

|Pr[G1-ABE,0
A (λ) = 1]− Pr[G1-ABE,1

A (λ) = 1]|

C.2 Proof of Theorem 5.1

We prove full adaptive security along with multi-use support (that is, ρ is not required to be injective)
of the MA-ABE scheme for NC1 presented in Figure 1 along with the amended dimension changes
specified in Section 5.1. We first formally state Theorem 5.1 next.

Theorem C.3. The MA-ABE construction in Figure 1 amended with dimension changes specified
in Section 5.1 supports NC1 circuits and is fully adaptively secure (Definition A.6) if all of the
following hold true.

• game condition holds.

• k-MDDH assumption holds in groups G1 and G2 ( Assumption A.8).

• SDG2
B1→B1,B2

assumption holds ( Assumption A.9).

• SDG2
B2→B2,B3

assumption holds ( Assumption A.9).

We prove this via a sequence of hybrid games. Suppose the adversary makes q number of queries
to the random oracle H1. Then, the hybrid games are as follows:

HybReal,Hyb
′
Real,Hyb1,Hyb2, {Hyb3,j,1,Hyb′3,j,1,Hyb3,j,2,Hyb′3,j,2,Hyb3,j,3}j∈[q],Hyb4,Hyb5.

The hybrid descriptions are exactly the same as in Section 4.1. The main difference is that each of
the statistical indistinguishability steps are replaced by computational indistinguishability, where
instead of relying on the injectivity of ρ, we will reduce the indistinguishability to the security ofthe
Core 1-ABE construction of [KW19]. In more detail, we will use the security of the Core 1-ABE to
prove the indistinguishability of the following pairs of distributions:

• Hyb1 and Hyb2,

• Hyb3,j,1 and Hyb′3,j,1 for j ∈ [q],

• Hyb3,j,2 and Hyb′3,j,2 for j ∈ [q],

• Hyb3,q and Hyb4.

Note that the security of Core 1-ABE is not an additional assumption required since we already
assumed k-MDDH.

Before proceeding to prove the above transitions, we note that the change of parameter dimensions
in the construction slightly affects the parameter dimensions in GlobalSetup∗ algorithm used from
hybrid Hyb′Real onwards as follows. We describe GlobalSetup∗ next and highlight the changes of
dimensions.
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GlobalSetup∗ runs the same computation as GlobalSetup to compute gp and additionally also
computes the following:

A2
$←Z k × 2k

q ,B1,B2
$←Z(2k+1)×k

q ,B3
$←Z(2k+1)×1

q(
A∗

1,A
∗
2

)
=

(
A1

A2

)−1

,
(
B∗

1,B
∗
2,B

∗
3

)
=
((

B1,B2,B3

)−1
)T

.

Let A =

(
A1

A2

)
, A∗ =

(
A∗

1,A
∗
2

)
, B =

(
B1,B2,B3

)
, B∗ =

(
B∗

1,B
∗
2,B

∗
3

)
. Then, st = (A,A∗,B,B∗).

Previously, the dimensions of A∗
1 were (k + 1) × k, now they are 2k × k. Previously, the

dimensions of A∗
2 were (k+ 1)× 1, now they are 2k × k . Observe that ∀i, j ∈ {1, 2}: AiA

∗
j = I if

i = j, and 0 if i ̸= j. Similarly, ∀i, j ∈ {1, 2, 3}: BT
i B

∗
j = I if i = j, and 0 if i ̸= j.

Next we prove the aforementioned transitioned through a series of claims.

Claim C.4. If the game condition holds and Core 1-ABE is secure, then, Hyb1 and Hyb2 are
computationally indistinguishable.

Proof. Observe that the only difference between Hyb1 and Hyb2 is that in ciphertext component

c3,x for all x ∈ [n]: c3,x contains JωxK1, where ωx is a secret share of 0T ∈ Z1×(2k+1)
q in Hyb1, but

it is a secret share of γB∗
3
T in Hyb2. Therefore, to prove that the hybrids are computationally

indistinguishable, we will reduce the indistinguishability to the security of Core 1-ABE.
Suppose that there exists an adversary A that can distinguish between Hyb1 and Hyb2 with non-

negligible probability. We will construct an adversary B that can break the security of Core 1-ABE
with non-negligible probability. Suppose C is the challenger for the Core 1-ABE security game. B
will run A and simulate the hybrid games.

We describe the reduction B next. C samples two messages µ(0), µ(1) $←Zq, samples a challenge bit

β
$←{0, 1} and provides µ(0) to B. B proceeds as in Hyb1 except that when it obtains the challenge

query (msg0,msg1, (M, ρ), {pki}i∈UA) fromA, B makes oracle query for C.OF ((M, ρ)). C computes se-
cret shares of µ(β) as {µx} ← LSSS.Share((M, ρ), µ(β)) and responds with ({µx}ρ(x)=0, {CPA.Enc(uρ(x), µx)}ρ(x)̸=0),

where CPA.Enc(uρ(x), µx) = (JrxK1, Jµx + rTxuρ(x)K1). The way B embeds this information obtained

from C in its response to A is as follows: B samples c̃x
$←Zk

q and sets JcxK1 := JAT
1 c̃xK1 · (AT

2 ⊙ JrxK1).
B computes c0, c1,x, c2,x as in Hyb1. For c3,x, B computes secret shares of −µ(0)B∗

3
T as {ω̃x} ←

LSSS.Share((M, ρ),−µ(0)B∗
3
T ) and then computes c3,x as follows:

c3,x :=


Jω̃xK1 · (sTx ⊙ pkρ(x),1) · (Jµx + rTxuρ(x)K1 ⊙B∗

3
T ) , if x ∈ UA and ρ(x) ̸= 0

Jω̃xK1 · (sTx ⊙ pkρ(x),1) · (J1K1 ⊙ µxB
∗
3
T ) , if x ∈ UA and ρ(x) = 0

Jω̃xK1 · (JcTx K1 ⊙ Ũρ(x)) · (Jµx + rTxuρ(x)K1 ⊙B∗
3
T ) , if x ∈ UA and ρ(x) ̸= 0

Jω̃xK1 · (JcTx K1 ⊙ Ũρ(x)) · (J1K1 ⊙ µxB
∗
3
T ) , if x ∈ UA and ρ(x) = 0

,

where for oracle AuthSetup(i), B samples master secret key asmski = (Vi
$←Z(2k)×(2k+1)

q , Ũi
$←Z(2k)×(2k+1)

q ).
B programs oracles H1(GID), KGen(i,GID), Corrupt(i) as in Hyb1. B implicitly sets

Ui = Ũi +A∗
2uiB

∗
3
T (B does not know ui that is chosen by C).

Observe that when we change Ũi to Ui, only pki, ski,GID and ct are changed. We anaylze the effect
of this change next.

51



• pki remains unchanged: Since A1A
∗
2 = 0, it follows that pki,1 = JA1UiK1 = JA1Ũi +

A1A
∗
2uiB

∗
3
T K1 = JA1ŨiK1.

• ski,GID remains unchanged for all GID: Since B∗
3
TB1 = 0, it follows that ski,GID =

JVik+UiB1hGIDK2 = JVik+ ŨiB1hGID +A∗
2uiB

∗
3
TB1hGIDK2 = JVik+ ŨiB1hGIDK2.

• For the challenge ciphertext ct, observe that the only change is in the c3,x component where
x ∈ UA. For x such that ρ(x) ̸= 0, we have:

c3,x = Jω̃xK1 · (JcTx K1 ⊙ Ũρ(x)) · (Jµx + rTxuρ(x)K1 ⊙B∗
3
T )

= Jω̃x + cTx Ũρ(x) + (µx + rTxuρ(x))B
∗
3
T K1

= J(ω̃x + µxB
∗
3
T ) + cTx Ũρ(x) + rTxuρ(x)B

∗
3
T K1

= J(ω̃x + µxB
∗
3
T ) + cTxUρ(x) − cTxA

∗
2uρ(x)B

∗
3
T + rTxuρ(x)B

∗
3
T K1

= J(ω̃x + µxB
∗
3
T ) + cTxUρ(x) − (AT

1 c̃x +AT
2 rx)

TA∗
2uρ(x)B

∗
3
T + rTxuρ(x)B

∗
3
T K1

= J(ω̃x + µxB
∗
3
T ) + cTxUρ(x)K1.

For x such that ρ(x) = 0, we have that uρ(x) = u0 = 0. So, Uρ(x) = Ũρ(x). Thus, we have:

c3,x = Jω̃xK1 · (JcTx K1 ⊙ Ũρ(x)) · (J1K1 ⊙ µxB
∗
3
T )

= Jω̃x + cTx Ũρ(x) + µxB
∗
3
T K1

= J(ω̃x + µxB
∗
3
T ) + cTxUρ(x)K1.

Recall that ω̃x is a secret share of −µ(0)B∗
3
T and µx is a secret share of µ(β). Then, from

linearity of the LSSS secret sharing scheme, it follows that (ω̃x + µxB
∗
3
T ) is a secret share of

−µ(0)B∗
3
T + µ(β)B∗

3
T = (µ(β) − µ(0))B∗

3
T .

Observe that if A satisfies the game condition, then B is admissible in its game with C. Observe
that when C chooses β = 0, (ω̃x + µxB

∗
3
T ) are secret shares of 0T and thus B perfectly simulates

Hyb1. Similarly, when C chooses β = 1, (ω̃x + µxB
∗
3
T ) are secret shares of (µ(1)− µ(0))B∗

3
T and thus

B perfectly simulates Hyb2 where γ is set implicitly as γ = µ(1) − µ(0). Thus, if A can distinguish
between Hyb1 and Hyb2 non-negligible probability, then B can break the security of Core 1-ABE
with non-negligible probability.

Claim C.5. If the game condition holds and Core 1-ABE is secure, then, Hyb3,j,1 and Hyb′3,j,1 are
computationally indistinguishable.

Proof. Observe that the only difference between Hyb3,j,1 and Hyb′3,j,1 is that in ciphertext component

c3,x for all x ∈ [n]: c3,x contains JωxK1, where ωx is a secret share of γB∗
3
T ∈ Z1×(2k+1)

q in
Hyb3,j,1, but it is a secret share of (B∗

2δ + γB∗
3)

T in Hyb′3,j,1. Therefore, to prove that the hybrids
are computationally indistinguishable, we will reduce the indistinguishability to the security of
Core 1-ABE.

Suppose that there exists an adversary A that can distinguish between Hyb3,j,1 and Hyb′3,j,1
with non-negligible probability. We will construct an adversary B that can break the security of
Core 1-ABE with non-negligible probability. Suppose C is the challenger for the Core 1-ABE security
game. B will run A and simulate the hybrid games.
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We describe the reduction B next. C samples two messages µ(0), µ(1) $←Zq, samples a chal-

lenge bit β
$←{0, 1} and provides µ(0) to B. B proceeds as in Hyb3,j,1 except that when it

obtains the challenge query (msg0,msg1, (M, ρ), {pki}i∈UA) from A, B makes oracle query for
C.OF ((M, ρ)). C computes secret shares of µ(β) as {µx} ← LSSS.Share((M, ρ), µ(β)) and responds
with ({µx}ρ(x)=0, {CPA.Enc(uρ(x), µx)}ρ(x)̸=0), where CPA.Enc(uρ(x), µx) = (JrxK1, Jµx + rTxuρ(x)K1).
The way B embeds this information obtained from C in its response to A is as follows: B samples

c̃x
$←Zk

q and sets JcxK1 := JAT
1 c̃xK1 · (AT

2 ⊙ JrxK1). B computes c0, c1,x, c2,x as in Hyb3,j,1. For

c3,x, B samples γ
$←Zq, δ0

$←Zk
q and computes secret shares of (−µ(0)B∗

2δ0 + γB∗
3)

T as {ω̃x} ←
LSSS.Share((M, ρ), (−µ(0)B∗

2δ0 + γB∗
3)

T ) and then computes c3,x as follows:

c3,x :=


Jω̃xK1 · (sTx ⊙ pkρ(x),1) · (Jµx + rTxuρ(x)K1 ⊙ δ0

TB∗
2
T ) , if x ∈ UA and ρ(x) ̸= 0

Jω̃xK1 · (sTx ⊙ pkρ(x),1) · (J1K1 ⊙ µxδ0
TB∗

2
T ) , if x ∈ UA and ρ(x) = 0

Jω̃xK1 · (JcTx K1 ⊙ Ũρ(x)) · (Jµx + rTxuρ(x)K1 ⊙ δ0
TB∗

2
T ) , if x ∈ UA and ρ(x) ̸= 0

Jω̃xK1 · (JcTx K1 ⊙ Ũρ(x)) · (J1K1 ⊙ µxδ0
TB∗

2
T ) , if x ∈ UA and ρ(x) = 0

,

where for oracle AuthSetup(i), B samples master secret key asmski = (Vi
$←Z(2k)×(2k+1)

q , Ũi
$←Z(2k)×(2k+1)

q ).
B programs oracles H1(GID), KGen(i,GID), Corrupt(i) as in Hyb3,j,1. B implicitly sets

Ui = Ũi +A∗
2uiδ0

TB∗
2
T (B does not know ui that is chosen by C).

Observe that when we change Ũi to Ui, only pki, ski,GID and ct are changed. We anaylze the effect
of this change next.

• pki remains unchanged: Since A1A
∗
2 = 0, it follows that pki,1 = JA1UiK1 = JA1Ũi +

A1A
∗
2uiδ0

TB∗
2
T K1 = JA1ŨiK1.

• ski,GIDindex
remains unchanged for all GIDindex when index ̸= j. For index = j, ski,GIDindex

changes but B can simulate the change using oracle query C.OX({i}). Recall that
ski,GIDindex

is of the form JVikK2 · (Ui ⊙ H1(GIDindex)), where H1(GIDindex) is of the following
form depending on index:

H1(GIDindex) =


JB1hGIDindex

+B3K2 , if index ≤ j − 1

JB1hGIDindex
+B2h

′
GIDindex

K2 , if index = j

JB1hGIDindex
K2 , if index > j

.

We analyze the three cases separately:

– Case 1: index < j − 1. ski,GIDindex
remains unchanged. Since B∗

2
TB1 = 0,B∗

2
TB3 = 0,

it follows that

ski,GIDindex
= JVik+Ui(B1hGIDindex

+B3)K2

= JVik+ (Ũi +A∗
2uiδ0

TB∗
2
T )(B1hGIDindex

+B3)K2

= JVik+ Ũi(B1hGIDindex
+B3)K2.

– Case 2: index = j. ski,GIDindex
is simulated with the help of oracle query C.OX({i}).

Since B∗
2
TB1 = 0,B∗

2
TB2 = I, it follows that

ski,GIDindex
= JVik+Ui(B1hGIDindex

+B2h
′
GIDindex

)K2

= JVik+ (Ũi +A∗
2uiδ0

TB∗
2
T )(B1hGIDindex

+B2h
′
GIDindex

)K2

= JVik+ Ũi(B1hGIDindex
+B2h

′
GIDindex

) +A∗
2uiδ0

Th′
GIDindex

K2.
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So, to compute ski,GIDindex
, B needs to know ui. For this, B queries the oracle C.OX({i})

and obtains ui as a response. Using ui, B can compute Ui and using this, it can properly
simulate ski,GIDindex

.

– Case 3: index > j. ski,GIDindex
remains unchanged. Since B∗

2
TB1 = 0, it follows that

ski,GIDindex
= JVik+UiB1hGIDindex

K2

= JVik+ (Ũi +A∗
2uiδ0

TB∗
2
T )B1hGIDindex

K2

= JVik+ ŨiB1hGIDindex
K2.

• For the challenge ciphertext ct, observe that the only change is in the c3,x component where
x ∈ UA. For x such that ρ(x) ̸= 0, we have:

c3,x = Jω̃xK1 · (JcTx K1 ⊙ Ũρ(x)) · (Jµx + rTxuρ(x)K1 ⊙ δ0
TB∗

2
T )

= Jω̃x + cTx Ũρ(x) + (µx + rTxuρ(x))δ0
TB∗

2
T K1

= J(ω̃x + µxδ0
TB∗

2
T ) + cTx Ũρ(x) + rTxuρ(x)δ0

TB∗
2
T K1

= J(ω̃x + µxδ0
TB∗

2
T ) + cTxUρ(x) − cTxA

∗
2uρ(x)δ0

TB∗
2
T + rTxuρ(x)δ0

TB∗
2
T K1

= J(ω̃x + µxδ0
TB∗

2
T ) + cTxUρ(x) − (AT

1 c̃x +AT
2 rx)

TA∗
2uρ(x)δ0

TB∗
2
T + rTxuρ(x)δ0

TB∗
2
T K1

= J(ω̃x + µxδ0
TB∗

2
T ) + cTxUρ(x)K1.

For x such that ρ(x) = 0, we have that uρ(x) = u0 = 0. So, Uρ(x) = Ũρ(x). Thus, we have:

c3,x = Jω̃xK1 · (JcTx K1 ⊙ Ũρ(x)) · (J1K1 ⊙ µxδ0
TB∗

2
T )

= Jω̃x + cTx Ũρ(x) + µxδ0
TB∗

2
T K1

= J(ω̃x + µxδ0
TB∗

2
T ) + cTxUρ(x)K1.

Recall that ω̃x is a secret share of (−µ(0)B∗
2δ0 + γB∗

3)
T and µx is a secret share of µ(β). Then,

from linearity of the LSSS secret sharing scheme, it follows that (ω̃x + µxδ0
TB∗

2
T ) is a secret

share of (−µ(0)B∗
2δ0 + γB∗

3)
T + µ(β)δ0

TB∗
2
T = (µ(β) − µ(0))δ0

TB∗
2
T + γB∗

3
T .

Observe that if A satisfies the game condition, then B is admissible in its game with C. Observe
that when C chooses β = 0, (ω̃x + µxB

∗
3
T ) are secret shares of γB∗

3
T and thus B perfectly simulates

Hyb3,j,1. Similarly, when C chooses β = 1, (ω̃x + µxB
∗
3
T ) are secret shares of (µ(β) − µ(0))δ0

TB∗
2
T +

γB∗
3
T and thus B perfectly simulates Hyb′3,j,1 where δ is set implicitly as δ = (µ(1) − µ(0))δ0. Thus,

if A can distinguish between Hyb3,j,1 and Hyb′3,j,1 non-negligible probability, then B can break the
security of Core 1-ABE with non-negligible probability.

Claim C.6. If the game condition holds and Core 1-ABE is secure, then, Hyb3,j,2 and Hyb′3,j,2 are
computationally indistinguishable.

Proof. Similar to the proof of Claim C.4.

Claim C.7. If the game condition holds and Core 1-ABE is secure, then, Hyb3,q and Hyb4 are
computationally indistinguishable.
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Proof. Observe that the only difference between Hyb3,q and Hyb4 is in ciphertext components c2,x

for all x ∈ [n]. Observe that c2,x contains JλxK1, where λx is a secret share of tT ∈ Z1×(2k+1)
q

in Hyb3,q, but it is a secret share of (t + τB∗
3)

T in Hyb4. Therefore, to prove that the hybrids
are computationally indistinguishable, we will reduce the indistinguishability to the security of
Core 1-ABE.

Suppose that there exists an adversary A that can distinguish between Hyb3,q and Hyb4 with non-
negligible probability. We will construct an adversary B that can break the security of Core 1-ABE
with non-negligible probability. Suppose C is the challenger for the Core 1-ABE security game. B
will run A and simulate the hybrid games.

We describe the reduction B next. C samples two messages µ(0), µ(1) $←Zq, samples a challenge bit

β
$←{0, 1} and provides µ(0) to B. B proceeds as in Hyb3,q except that when it obtains the challenge

query (msg0,msg1, (M, ρ), {pki}i∈UA) fromA, B makes oracle query for C.OF ((M, ρ)). C computes se-
cret shares of µ(β) as {µx} ← LSSS.Share((M, ρ), µ(β)) and responds with ({µx}ρ(x)=0, {CPA.Enc(uρ(x), µx)}ρ(x)̸=0),

where CPA.Enc(uρ(x), µx) = (JrxK1, Jµx + rTxuρ(x)K1). The way B embeds this information obtained

from C in its response to A is as follows: B samples c̃x
$←Zk

q and sets JcxK1 := JAT
1 c̃xK1 · (AT

2 ⊙ JrxK1).
B computes c0, c1,x as in Hyb3,q. For c2,x, B computes secret shares of (t − µ(0)B∗

3)
T as {λ̃x} ←

LSSS.Share((M, ρ), (t− µ(0)B∗
3)

T ) and then computes c2,x as follows:

c2,x :=


Jλ̃xK1 · (sTx ⊙ pkρ(x),0) · (Jµx + rTxuρ(x)K1 ⊙B∗

3
T ) , if x ∈ UA and ρ(x) ̸= 0

Jλ̃xK1 · (sTx ⊙ pkρ(x),0) · (J1K1 ⊙ µxB
∗
3
T ) , if x ∈ UA and ρ(x) = 0

Jλ̃xK1 · (JcTx K1 ⊙ Ṽρ(x)) · (Jµx + rTxuρ(x)K1 ⊙B∗
3
T ) , if x ∈ UA and ρ(x) ̸= 0

Jλ̃xK1 · (JcTx K1 ⊙ Ṽρ(x)) · (J1K1 ⊙ µxB
∗
3
T ) , if x ∈ UA and ρ(x) = 0

,

where for oracle AuthSetup(i), B samples master secret key asmski = (Ṽi
$←Z(2k)×(2k+1)

q , Ũi
$←Z(2k)×(2k+1)

q ).
Since the vector k in glpbal parameters gp is uniform random, B can equivalently compute it as

k := B1k1+B2k2+ k3B3 for uniform random k1
$←Zk

q , k2
$←Zk

q , k3
$←Zq. For c3,x, B computes secret

shares of γ′B∗
3
T as {ω̃x} ← LSSS.Share((M, ρ), γ′B∗

3
T ), where γ′

$←Zq and then computes c3,x as
follows:

c3,x :=


Jω̃xK1 · (sTx ⊙ pkρ(x),1)/(Jµx + rTxuρ(x)K1 ⊙ k3B

∗
3
T ) , if x ∈ UA and ρ(x) ̸= 0

Jω̃xK1 · (sTx ⊙ pkρ(x),1)/(J1K1 ⊙ µxk3B
∗
3
T ) , if x ∈ UA and ρ(x) = 0

Jω̃xK1 · (JcTx K1 ⊙ Ũρ(x))/(Jµx + rTxuρ(x)K1 ⊙ k3B
∗
3
T ) , if x ∈ UA and ρ(x) ̸= 0

Jω̃xK1 · (JcTx K1 ⊙ Ũρ(x))/(J1K1 ⊙ µxk3B
∗
3
T ) , if x ∈ UA and ρ(x) = 0

,

B programs oracles H1(GID), KGen(i,GID), Corrupt(i) as in Hyb3,q. B implicitly sets

Vi = Ṽi +A∗
2uiB

∗
3
T , Ui = Ũi − k3A

∗
2uiB

∗
3
T (B does not know ui that is chosen by C).

Observe that when we change (Ṽi, Ũi) to (Vi,Ui), only pki, ski,GID and ct are changed. We anaylze
the effect of this change next.

• pki remains unchanged: Since A1A
∗
2 = 0, it follows that pki,0 = JA1ViK1 = JA1Ṽi +

A1A
∗
2uiB

∗
3
T K1 = JA1ṼiK1. Similarly, pki,1 = JA1UiK1 = JA1Ũi−k3A1A

∗
2uiB

∗
3
T K1 = JA1ŨiK1.
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• ski,GID remains unchanged for all GID: Since B∗
3
TB1 = 0,B∗

3
TB2 = 0,B∗

3
TB3 = I, it

follows that

ski,GID = JVik+Ui(B1hGID +B3)K2

= J(Ṽi +A∗
2uiB

∗
3
T )k+ (Ũi − k3A

∗
2uiB

∗
3
T )(B1hGID +B3)K2

= JṼik+A∗
2uiB

∗
3
Tk+ Ũi(B1hGID +B3)− k3A

∗
2uiK2

= JṼik+A∗
2uiB

∗
3
T (B1k1 +B2k2 + k3B3) + Ũi(B1hGID +B3)− k3A

∗
2uiK2

= JṼik+ Ũi(B1hGID +B3)K2.

• For the challenge ciphertext ct, observe that the only change is in the c2,x, c3,x components
where x ∈ UA. For x such that ρ(x) ̸= 0, we have:

c2,x = Jλ̃xK1 · (JcTx K1 ⊙ Ṽρ(x)) · (Jµx + rTxuρ(x)K1 ⊙B∗
3
T )

= Jλ̃x + cTx Ṽρ(x) + (µx + rTxuρ(x))B
∗
3
T K1

= J(λ̃x + µxB
∗
3
T ) + cTx Ṽρ(x) + rTxuρ(x)B

∗
3
T K1

= J(λ̃x + µxB
∗
3
T ) + cTxVρ(x) − cTxA

∗
2uρ(x)B

∗
3
T + rTxuρ(x)B

∗
3
T K1

= J(λ̃x + µxB
∗
3
T ) + cTxVρ(x) − (AT

1 c̃x +AT
2 rx)

TA∗
2uρ(x)B

∗
3
T + rTxuρ(x)B

∗
3
T K1

= J(λ̃x + µxB
∗
3
T ) + cTxVρ(x)K1,

c3,x = Jω̃xK1 · (JcTx K1 ⊙ Ũρ(x))/(Jµx + rTxuρ(x)K1 ⊙ k3B
∗
3
T )

= Jω̃x + cTx Ũρ(x) − (µx + rTxuρ(x))k3B
∗
3
T K1

= J(ω̃x − µxk3B
∗
3
T ) + cTx Ũρ(x) − k3r

T
xuρ(x)B

∗
3
T K1

= J(ω̃x − µxk3B
∗
3
T ) + cTxUρ(x) + k3c

T
xA

∗
2uρ(x)B

∗
3
T − k3r

T
xuρ(x)B

∗
3
T K1

= J(ω̃x − µxk3B
∗
3
T ) + cTxUρ(x) + k3(A

T
1 c̃x +AT

2 rx)
TA∗

2uρ(x)B
∗
3
T − k3r

T
xuρ(x)B

∗
3
T K1

= J(ω̃x − µxk3B
∗
3
T ) + cTxUρ(x)K1.

For x such that ρ(x) = 0, we have that uρ(x) = u0 = 0. So, Vρ(x) = Ṽρ(x) and Uρ(x) = Ũρ(x).
Thus, we have:

c2,x = Jλ̃xK1 · (JcTx K1 ⊙ Ṽρ(x)) · (J1K1 ⊙ µxB
∗
3
T )

= Jλ̃x + cTx Ṽρ(x) + µxB
∗
3
T K1

= J(λ̃x + µxB
∗
3
T ) + cTxVρ(x)K1.

c3,x = Jω̃xK1 · (JcTx K1 ⊙ Ũρ(x))/(J1K1 ⊙ µxk3B
∗
3
T )

= Jω̃x + cTx Ũρ(x) − µxk3B
∗
3
T K1

= J(ω̃x − µxk3B
∗
3
T ) + cTxUρ(x)K1
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Recall that λ̃x is a secret share of (t− µ(0)B∗
3)

T and µx is a secret share of µ(β). Then, from

linearity of the LSSS secret sharing scheme, it follows that (λ̃x + µxB
∗
3
T ) is a secret share of

(t− µ(0)B∗
3)

T + µ(β)B∗
3
T = tT + (µ(β) − µ(0))B∗

3
T . Recall that ω̃x is a secret share of γ′B∗

3
T

and µx is a secret share of µ(β). Then, from linearity of the LSSS secret sharing scheme, it
follows that (ω̃x + µxk3B

∗
3
T ) is a secret share of γ′B∗

3
T + µ(β)k3B

∗
3
T = (γ′ + k3µ

(β))B∗
3
T .

Observe that if A satisfies the game condition, then B is admissible in its game with C. B
implicitly sets γ = γ′ + k3µ

(β) in A’s view. Since γ′ and k3 are chosen to be uniform random, the
distribution of γ is also uniform random for both β ∈ {0, 1}. Observe that when C chooses β = 0,

(λ̃x + µxB
∗
3
T ) are secret shares of tT and thus B perfectly simulates Hyb3,q. Similarly, when C

chooses β = 1, (λ̃x+µxB
∗
3
T ) are secret shares of tT +(µ(1)−µ(0))B∗

3
T and thus B perfectly simulates

Hyb4 where τ is set implicitly as τ = µ(1) − µ(0). Thus, if A can distinguish between Hyb3,q and
Hyb4 non-negligible probability, then B can break the security of Core 1-ABE with non-negligible
probability.

Thus, from Claims 4.2 to 4.4, 4.6, 4.8, 4.10, 4.12, 4.13 and C.4 to C.7 and hybrid argument, it
follows that Theorem 5.1 holds.

D MA-ABE for ASP from prime-order groups: Appendix

D.1 Definition

In case of MA-ABE for ASPs, each attribute will not only be associated with an authority, but
also denotes a value in Zq. So, we modify the definition of MA-ABE presented in Appendix A.5 to
incorporate this generalization. We note that this modification is just syntactic and natural when
considering MA-ABE for ASPs.

Let AU denote the authority/attribute universe and let each authority control one attribute.
We use authority and attribute interchangably. Suppose that an ASP is denoted by a (M,N, ρ) of
matrices M,N ∈ Zn×ℓ

q and a labeling function ρ : [n]→ U , where U ⊆ AU denotes a subset of the
attribute universe.

The syntax of KGen algorithm is then as follows.

• ski,GID,zi ← KGen(gp,mski,GID, zi): The key generation algorithm takes as input the global
parameters gp, a master secret key mski of an authority i ∈ AU a user’s global identifier
GID ∈ GID, and an attribute value zi ∈ Zq. It outputs a secret key ski,GID,zi for the user.

Correctness. An MA-ABE scheme for ASP is said to be correct if for every λ ∈ N, msg ∈ M,
GID ∈ GID, every ASP (M,N, ρ) defined on a set U ⊆ AU of attributes, and every set of attribute
values S = {zρ(x)}x∈Sx (where Sx ⊆ [n] denotes a subset of row indices) which satisfy the access
structure (i.e., (1, 0, . . . , 0) ∈ span({zρ(x)Mx +Nx}x∈Sx)), it holds that

Pr

msg′ = msg :

gp← GlobalSetup(1λ),
∀i ∈ U : (pki,mski)← AuthSetup(gp, i)

∀x ∈ Sx : skρ(x),GID,zρ(x) ← KGen(gp,mskρ(x),GID, zρ(x))

ct← Enc(gp,msg,A, {pki}i∈U )
msg′ ← Dec(gp, ct, {zρ(x), skρ(x),GID,zρ(x)}x∈Sx)

 = 1.
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Full Adaptive Security. The security game remains the same as in Appendix A.5 except that
for keygen oracle query KGen(i,GID, zi), the reponse is ski,GID,zi ← KGen(gp,mski,GID, zi).

Remark D.1. Building MA-ABE for ASP satisfying full adaptive security seems to have fundamental
barriers as pointed out in Section 1. In a little more detail, the fundamental barrier seems that if
the challenge policy (M,N, ρ) involves a corrupt authority controlling an attribute corresponding
to some x-th rows Mx,Nx, then it can issue more than one attribute values zρ(x) and z′ρ(x) that

are not equal. Then, observe that the span of zρ(x)Mx +Nx and z′ρ(x)Mx +Nx contains the vector

Mx. Then consider a scenarios where (1, 0, . . . , 0) is not in span of either of these two vectors and
hence each secret key on its own would be insufficient to decrypt, but suppose that (1, 0, . . . , 0) is in
span of Mx. Then, collusion of the two keys should allow to decrypt. This is a fundamental barrier
towards building MA-ABE for ASPs with full adaptive security.

In light of Remark D.1, we consider two weakenings of full adaptive security defined as follows.

Definition D.2 (Full Adaptive Security with Type 1 Restriction). An MA-ABE scheme for ASPs
is said to be full adaptive secure with type 1 restriction if it satisfies full adaptive security subject to
following additional admissibility criteria:

• no attribute authority appearing in a ciphertext is corrupted (that is, set S defined in Ap-
pendix A.5 and Figure 3 is empty),

• the adversary queries at most one key per authority and user id pair (i,GID).

Suppose the challenge access policy (M,N, ρ) is defined over a set of attributes U ⊆ AU , that is,
ρ : [n]→ U . Then the game condition from Appendix A.5 combined with the additional admissibility
criteria described above simplifies to the following requirements:

• for each GID ∈ GID, it is required that SGID /∈ (M,N, ρ),

• for each GID ∈ GID, for each i ∈ SGID, it is required that |Si,GID| = 1,

where SGID and Si,GID are defined as follows:

• for each global identifier GID ∈ GID, SGID denotes the subset of U containing attributes i such
that the adversary queried a secret key for the tuple (i,GID, ·).

• for each global identifier GID ∈ GID, for each attribute i ∈ SGID, Si,GID denotes the set of
attribute values zi such that the adversary queried a secret key for the tuple (i,GID, zi).

We remark that the adversary is still allowed to make corrupt authorities adaptively subject to
the above additional admissibility criteria.

Definition D.3 (Full Adaptive Security with Type 2 Restriction). An MA-ABE scheme for ASPs
is said to be full adaptive secure with type 2 restriction if it satisfies full adaptive security subject to
following additional admissibility criteria:

• decryption requires keys from all authorities appearing in a ciphertext,

• either the adversary corrupts no authority appearing in the challenge ciphertext policy or for
each GID queried, there exists an honest authority appearing in the challenge ciphertext policy
who did not issue any secret key,

• the adversary queries at most one key per authority and user id pair (i,GID).
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D.2 Correctness of MA-ABE for ASP construction

For the MA-ABE for ASP construction in Figure 2, observe that dx can be simplified as follows:

dx = e(c
zρ(x)
2,x · ĉ2,x, JkK2) ·

e(c
zρ(x)
3,x · ĉ3,x,H1(GID))

e(c1,x, skρ(x),GID,zρ(x))

= J((zρ(x)λx + λ̂x) + sTxA(zρ(x)Vρ(x) + V̂ρ(x)))kKT

·
J((zρ(x)ωx + ω̂x) + sTxA(zρ(x)Uρ(x) + Ûρ(x)))hGIDKT

J(sTxA)((zρ(x)Vρ(x) + V̂ρ(x))k+ (zρ(x)Uρ(x) + Ûρ(x))hGID)KT

= J(zρ(x)λx + λ̂x)k+ (zρ(x)ωx + ω̂x)hGIDKT
= J(zρ(x)Mx +Nx)(Tk+WhGID)KT .

Then, d can be simplified as follows:

d =
∏
x∈Sx

dwx
x

= J
∑
x∈Sx

wx(zρ(x)Mx +Nx)(Tk+WhGID)KT

= J(1, 0, . . . , 0)(Tk+WhGID)KT
= JtTk+ 0ThGIDKT (because first rows of T and W are tT and 0T )

= JtTkKT .

Thus, it follows that c0/d = msg. Thus, correctness holds.

D.3 Proof of Theorem 6.1

We prove full adaptive security with Type 1 restriction of the MA-ABE scheme for ASP presented
in Figure 2 subject to the one-use restriction, that is, ρ is injective. We first formally state Theorem 6.1
next.

Theorem D.4. The MA-ABE construction for ASP in Figure 2 is fully adaptively secure with Type
1 restriction (Definition D.2) if all of the following hold true.

• game condition holds and ρ is injective.

• k-MDDH assumption holds in groups G1 and G2 ( Assumption A.8).

• SDG2
B1→B1,B2

assumption holds ( Assumption A.9).

• SDG2
B2→B2,B3

assumption holds ( Assumption A.9).

We prove this via a sequence of hybrid games. This sequence of hybrids closely follows those for
the monotone BSP case presented in Theorem 4.1 and Section 4.1.

Suppose the adversary makes q number of queries to the random oracle H1. Then, the hybrid
games are as follows:

HybReal,Hyb
′
Real,Hyb1,Hyb2, {Hyb3,j,1,Hyb′3,j,1,Hyb3,j,2,Hyb′3,j,2,Hyb3,j,3}j∈[q],Hyb4,Hyb5.
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Hybrid HybReal. This is the real-world game MA-ABEfully-adaptive
A with the additional admissibility

criteria for full adaptive security with Type 1 restriction as defined in Definition D.2.

Hybrid Hyb′Real. This is HybReal except that the challenger computes (gp, st)← GlobalSetup∗(1λ)

and provides gp to the adversary. Here, GlobalSetup∗ runs the same computation as GlobalSetup to
compute gp and additionally also computes the following:

A2
$←Z1×(k+1)

q ,B1,B2
$←Z(2k+1)×k

q ,B3
$←Z(2k+1)×1

q(
A∗

1,A
∗
2

)
=

(
A1

A2

)−1

,
(
B∗

1,B
∗
2,B

∗
3

)
=
((

B1,B2,B3

)−1
)T

.

Let A =

(
A1

A2

)
, A∗ =

(
A∗

1,A
∗
2

)
, B =

(
B1,B2,B3

)
, B∗ =

(
B∗

1,B
∗
2,B

∗
3

)
. Then, st = (A,A∗,B,B∗).

Observe that ∀i, j ∈ {1, 2}: AiA
∗
j = I if i = j, and 0 if i ̸= j. Similarly, ∀i, j ∈ {1, 2, 3}:

BT
i B

∗
j = I if i = j, and 0 if i ̸= j.

Claim D.5. Hybrids HybReal and Hyb′Real are identically distributed.

Proof. HybReal and Hyb′Real are identically distributed because the distribution of gp in GlobalSetup
and GlobalSetup∗ is the same.

Hybrid Hyb0. This is same as HybReal except that the hash function H1 is programmed to

output all hash values in span(B1) as follows: on input GID, sample hGID
$← Zk

q and output

H1(GID) = J B1hGID K2.

Claim D.6. If k-MDDH holds in group G2, then Hyb′Real and Hyb0 are computationally indistin-
guishable.

Proof. Similar to proof of Claim 4.3.

Hybrid Hyb1. This is same as Hyb′Real except that the ciphertext is changed to semi-functional form.
Before presenting the semi-functional form, we note that the normal form of challenge ciphertext can
be simply written as follows since no attribute authority appearing in the ciphetext can be corrupted
( Definition D.2): ct := (c0, {c1,x, c2,x, c3,x, ĉ2,x, ĉ3,x}x∈[n]), where c0 := msgb · JtTkKT , ∀x ∈ [n]:

c1,x := JcTx K1 := JsTxA1K1,

c2,x := JλxK1 · ( cTx ⊙ JVρ(x)K1 ),

c3,x := JωxK1 · ( cTx ⊙ JUρ(x)K1 ),

ĉ2,x := Jλ̂xK1 · ( cTx ⊙ JV̂ρ(x)K1 ),

ĉ3,x := Jω̂xK1 · ( cTx ⊙ JÛρ(x)K1 ).

Given this notation, the ciphertext in Hyb1 is same as the normal ciphertext except that for all

x ∈ UA: c1,x := JcTx K1 , where cx
$←Zk+1

q . We call this semi-functional ciphertext. Observe that

in total this means that semi-functional ciphertext changes c1,x, c2,x, c3,x, ĉ2,x, ĉ3,x for x ∈ [n] when
compared to normal ciphertext.
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Claim D.7. If k-MDDH holds in group G1, then Hyb0 and Hyb1 are computationally indistinguish-
able.

Proof. Similar to the proof of Claim 4.4

Hybrid Hyb2. This is same as Hyb1 except that the ciphertext structure is changed as follows:
for all x ∈ [n], c3,x, ĉ3,x are computed using ωx := Mx W , ω̂x := Nx W , where W is same as in

Hyb1 except that the first row is changed from 0T to γB∗
3
T , where γ

$←Zq, that is, W =

(
γB∗

3
T

Wbot

)
.

Claim D.8. If the game condition holds and ρ is injective, then, Hyb1 and Hyb2 are statistically
indistinguishable.

Proof. Observe that the only difference between Hyb1 and Hyb2 is that in ciphertext components
c3,x, ĉ3,x for all x ∈ [n]: c3,x, ĉ3,x contain JωxK1, Jω̂xK1 respectively, where ωx, ω̂x are secret share of

0T ∈ Z1×(2k+1)
q in Hyb1, but are secret share of γB∗

3
T in Hyb2. Therefore, to prove that the hybrids

are statistically indistinguishable, we will argue that γB∗
3
T is information theoretically hidden from

the adversary A in Hyb2.
Since the adversary is not allowed to corrupt any attribute authorities appearing in the chal-

lenge ciphertext, the only possible way for A to get information about γB∗
3
T is through the

ciphertext components c3,x, ĉ3,x corresponding to all the rows x ∈ [n] of N. However, for each

such row x, A can only recover cTx , MxW + cTxUρ(x), NxW + cTx Ûρ(x) information theoreti-

cally. Without loss of generality, we can compute Uρ(x) := Uρ(x),1B
∗
1
T +Uρ(x),2B

∗
2
T +Uρ(x),3B

∗
3
T ,

where Uρ(x),1
$←Z(k+1)×k

q ,Uρ(x),2
$←Z(k+1)×k

q , and Uρ(x),3
$←Z(k+1)×1

q . Similarly, we can compute

Ûρ(x) := Ûρ(x),1B
∗
1
T + Ûρ(x),2B

∗
2
T + Ûρ(x),3B

∗
3
T , where Ûρ(x),1

$←Z(k+1)×k
q , Ûρ(x),2

$←Z(k+1)×k
q , and

Ûρ(x),3
$←Z(k+1)×1

q . Let the first entry of Mx be mx, that is, Mx = (mx, . . .). Let the first entry of
Nx be nx, that is, Nx = (nx, . . .). Then, observe that we can write

Nx

(
γB∗

3
T

Wbot

)
+ cTx Ûρ(x)

= Nx

(
0

Wbot

)
+Nx

(
γB∗

3
T

0

)
+ cTx Ûρ(x)

= Nx

(
0

Wbot

)
+ (nx, . . .)

(
γB∗

3
T

0

)
+ cTx Ûρ(x)

= Nx

(
0

Wbot

)
+ nxγB

∗
3
T + cTx Ûρ(x)

= Nx

(
0

Wbot

)
+ (nxγ + cTx Ûρ(x),3)B

∗
3
T + cTx Ûρ(x),1B

∗
1
T + cTx Ûρ(x),2B

∗
2
T

≡ Nx

(
0

Wbot

)
+ (cTx Û

′
ρ(x),3)B

∗
3
T + cTx Ûρ(x),1B

∗
1
T + cTx Ûρ(x),2B

∗
2
T

where we can write Û′
ρ(x),3 = Ûρ(x),3 + ∆̂ such that nxγ = cTx ∆̂. Similarly, we can write

Mx

(
γB∗

3
T

Wbot

)
+ cTxUρ(x)

≡Mx

(
0

Wbot

)
+ (cTxU

′
ρ(x),3)B

∗
3
T + cTxUρ(x),1B

∗
1
T + cTxUρ(x),2B

∗
2
T
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where we can write U′
ρ(x),3 = Uρ(x),3 +∆ such that mxγ = cTx∆. Therefore, to complete the proof,

it suffices to argue that (Uρ(x),3, Ûρ(x),3) and (U′
ρ(x),3, Û

′
ρ(x),3) are identically distributed. We show

this next.
Observe that since ρ is injective, hence it follows that Uρ(x), Ûρ(x) are fresh random matrices

and the only other place they appear are in the secret key skρ(x),GID,zρ(x) . Due to the game

condition that |Sρ(x),GID| = 1, there can be only one such secret key per attribute ρ(x). We

argue that skρ(x),GID,zρ(x) information theoretically leaks no information about (Uρ(x),3, Ûρ(x),3) and

hence (Uρ(x),3, Ûρ(x),3) and (U′
ρ(x),3, Û

′
ρ(x),3) are identically distributed. To see this, observe that

skρ(x),GID,zρ(x) information theoretically reveals (zρ(x) ·Vρ(x)+V̂ρ(x))k+(zρ(x) ·Uρ(x)+Ûρ(x))B1hGID,

where Uρ(x)B1hGID = Uρ(x),1hGID and Ûρ(x)B1hGID = Ûρ(x),1hGID since B∗
1
TB1 = I, B∗

2
TB1 = 0

and B∗
3
TB1 = 0, thus no information about (Uρ(x),3, Ûρ(x),3) is revealed.

In conclusion, substituting (Uρ(x),3, Ûρ(x),3) with (U′
ρ(x),3, Û

′
ρ(x),3) (as described above) for all

rows x ∈ [n] of matrices M,N allows us to move from Hyb2 to Hyb1.
Therefore, it follows that Hyb1 and Hyb2 are statistically indistinguishable. This completes the

proof of Claim D.8.

Hybrid Hyb3,j−1 for j ∈ [q + 1]. This hybrid is same as Hyb2 except that for the ith global
identifier GIDi for i ≤ j − 1, the challenger programs the output H1(GIDi) of the random oracle

H1 as H1(GIDi) = J B1hGIDi
+B3 K2, where hGIDi

$←Zk
q , while for i > j − 1, it programs the output

H1(GIDi) of the random oracle H1 as H1(GIDi) = JB1hGIDi
K2 as earlier.

Observe that Hyb3,0 is same as Hyb2. We introduce a sequnce of intermediate hybrids Hyb3,j,1,
Hyb′3,j,1,Hyb3,j,2,Hyb

′
3,j,2,Hyb3,j,3 between Hyb3,j−1 and Hyb3,j for all j ∈ [q] as defined below.

Hybrid Hyb3,j,1 for j ∈ [q]. This hybrid is same as Hyb3,j−1 except that for the jth global
identifier GIDj , the challenger programs the output H1(GIDj) of the random oracle H1 as H1(GIDj) =

J B1hGIDj
+B2h

′
GIDj

K2, where hGIDj
,h′

GIDj

$←Zk
q .

Claim D.9. If SDG2
B1→B1,B2

assumption holds ( Assumption A.9), then, hybrids Hyb3,j−1 and
Hyb3,j,1 are computationally indistinguishable for all j ∈ [q].

Proof. Similar to proof of Claim 4.6.

Hybrid Hyb′3,j,1. This is same as Hyb3,j,1 except that the ciphertext structure is changed as follows:

for all x ∈ [n], c3,x, ĉ3,x are computed using ωx := Mx W , ω̂x := Nx W , where W is same as in

Hyb2 except that the first row is changed from γB∗
3
T to (B∗

2δ + γB∗
3)

T , where γ
$←Zq and δ

$←Zk
q

that is, W =

(
(B∗

2δ + γB∗
3)

T

Wbot

)
.

Claim D.10. If the game condition holds and ρ is injective, then, Hyb3,j,1 and Hyb′3,j,1 are statisti-
cally indistinguishable.

Proof. Observe that the only difference between Hyb3,j,1 and Hyb′3,j,1 is that in ciphertext components
c3,x, ĉ3,x for all x ∈ [n]: c3,x, ĉ3,x contain JωxK1, Jω̂xK1 respectively, where ωx, ω̂x are secret share of

γB∗
3
T ∈ Z1×(2k+1)

q in Hyb3,j,1, but it is a secret share of (B∗
2δ + γB∗

3)
T in Hyb′3,j,1. Therefore, to
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prove that the hybrids are statistically indistinguishable, we will argue that B∗
2δ is information

theoretically hidden to the adversary A in Hyb′3,j,1.
Suppose the challenge access policy (M,N, ρ) is defined over a set of attributes U ⊆ AU , that

is, ρ : [n]→ U . Recall from Definition D.2 that the game condition requires that:

• for each GID ∈ GID, it is required that SGID /∈ (M,N, ρ),

• for each GID ∈ GID, for each i ∈ SGID, it is required that |Si,GID| = 1,

where SGID and Si,GID are defined as follows:

• for each global identifier GID ∈ GID, SGID denotes the subset of U containing attributes i
such that the adversary queried a secret key for the tuple (i,GID, ·).

• for each global identifier GID ∈ GID, for each attribute i ∈ SGID, Si,GID denotes the set of
attribute values zi such that the adversary queried a secret key for the tuple (i,GID, zi).

To show that B∗
2δ is information theoretically hidden from the adversary A in Hyb′3,j,1, we only

need to rely on the two game conditions for the jth GID, that is, we will use the fact that
SGIDj

/∈ (M,N, ρ) and for each i ∈ SGIDj
, |Si,GIDj

| = 1. Here, SGIDj
/∈ (M,N, ρ) is a shorthand for

(1, 0, . . . , 0) /∈ rowSpan({zρ(x)Mx +Nx}ρ(x)∈SGIDj
).

Since the adversary is not allowed to corrupt any attribute authorities appearing in the challenge
ciphertext, the only possible way for A to get information about B∗

2δ is through the ciphertext
components c3,x, ĉ3,x corresponding to all the rows x ∈ [n] of M,N. However, for each such row x,

A can only recover cTx , MxW+ cTxUρ(x), NxW+ cTx Ûρ(x) information theoretically. We analyze
two cases:

• x such that ρ(x) ∈ SGIDj
: These are the rows of M,N labeled by authorities who issued

key for GIDj . From the game condition, it follows that (1, 0, . . . , 0) /∈ rowSpan({zρ(x)Mx +
Nx}ρ(x)∈SGIDj

). Therefore, it follows that MxW and NxW contain no information about

(B∗
2δ + γB∗

3)
T . Hence, cTx , MxW + cTxUρ(x), NxW + cTx Ûρ(x) reveal no information about

(B∗
2δ + γB∗

3)
T to the adversary A.

• x such that ρ(x) ∈ U \ SGIDj
: These are the rows of M,N labeled by authorities who are

neither corrupt nor issued key for GIDj . The game condition does not apply for these rows and
the analysis requires more care as described next. Without loss of generality, we can compute

Uρ(x) := Uρ(x),1B
∗
1
T +Uρ(x),2B

∗
2
T +Uρ(x),3B

∗
3
T , where Uρ(x),1

$←Z(k+1)×k
q ,Uρ(x),2

$←Z(k+1)×k
q ,

and Uρ(x),3
$←Z(k+1)×1

q . Similarly, we can compute Ûρ(x) := Ûρ(x),1B
∗
1
T + Ûρ(x),2B

∗
2
T +

Ûρ(x),3B
∗
3
T , where Ûρ(x),1

$←Z(k+1)×k
q , Ûρ(x),2

$←Z(k+1)×k
q , and Ûρ(x),3

$←Z(k+1)×1
q . Let the first

entry of Mx be mx, that is, Mx = (mx, . . .). Let the first entry of Nx be nx, that is,
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Nx = (nx, . . .). Then, observe that we can write

Nx

(
(B∗

2δ + γB∗
3)

T

Wbot

)
+ cTx Ûρ(x)

= Nx

(
γB∗

3
T

Wbot

)
+Nx

(
(B∗

2δ)
T

0

)
+ cTx Ûρ(x)

= Nx

(
γB∗

3
T

Wbot

)
+ (nx, . . .)

(
(B∗

2δ)
T

0

)
+ cTx Ûρ(x)

= Nx

(
γB∗

3
T

Wbot

)
+ nx(B

∗
2δ)

T + cTx Ûρ(x)

= Nx

(
γB∗

3
T

Wbot

)
+ (nxδ

T + cTx Ûρ(x),2)B
∗
2
T + cTx Ûρ(x),1B

∗
1
T + cTx Ûρ(x),3B

∗
3
T

≡ Nx

(
γB∗

3
T

Wbot

)
+ (cTx Û

′
ρ(x),2)B

∗
2
T + cTx Ûρ(x),1B

∗
1
T + cTx Ûρ(x),3B

∗
3
T

where we can write Û′
ρ(x),2 = Ûρ(x),2 + ∆̂ such that nxδ

T = cTx ∆̂. Similarly, we can write

Mx

(
(B∗

2δ + γB∗
3)

T

Wbot

)
+ cTxUρ(x)

≡ Nx

(
γB∗

3
T

Wbot

)
+ (cTxU

′
ρ(x),2)B

∗
2
T + cTxUρ(x),1B

∗
1
T + cTxUρ(x),3B

∗
3
T

where we can write U′
ρ(x),2 = Uρ(x),2 +∆ such that mxδ

T = cTx∆. Therefore, to complete the

proof, it suffices to argue that (Uρ(x),2, Ûρ(x),2) and (U′
ρ(x),2, Û

′
ρ(x),2) are identically distributed.

We show this next.

Observe that since ρ is injective, hence it follows that Uρ(x), Ûρ(x) are fresh random matrix
and the only other place it appears are in secret key skρ(x),GIDindex

. Due to the game condition
that |Sρ(x),GID| = 1, there can be only one such secret key per attribute ρ(x). We argue

that skρ(x),GID,zρ(x) information theoretically leaks no information about (Uρ(x), Ûρ(x)) and

hence (Uρ(x), Ûρ(x)) and (U′
ρ(x), Û

′
ρ(x)) are identically distributed. To see this, observe that

the Uρ(x), Ûρ(x)-dependent term of skρ(x),GIDindex,zρ(x) is of the form (zρ(x)Uρ(x) + Ûρ(x)) ⊙
H1(GIDindex), where H1(GIDindex) is of the following form depending on index:

H1(GIDindex) =


JB1hGIDindex

+B3K2 , if index ≤ j − 1

JB1hGIDindex
+B2h

′
GIDindex

K2 , if index = j

JB1hGIDindex
K2 , if index > j

.

We analyze the three cases separately:

– Case 1: index < j. Observe that the Uρ(x), Ûρ(x)-dependent term of skρ(x),GIDindex,zρ(x)
information theoretically reveals

(zρ(x)Uρ(x),1 + Ûρ(x),1)hGIDindex
+ zρ(x)Uρ(x),3 + Ûρ(x),3

since B∗
2
TB1 = 0 and B∗

2
TB3 = 0.
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– Case 2: index = j. This case requires no analysis since adversary A never sees secret
keys skρ(x),GIDj

. This is due to the definition of set SGIDj
and the fact that we are only

considering x such that ρ(x) ∈ U \ SGIDj
.

– Case 3: index > j. Observe that the Uρ(x), Ûρ(x)-dependent term of skρ(x),GIDindex,zρ(x)
information theoretically reveals

(zρ(x)Uρ(x),1 + Ûρ(x),1)hGIDindex

since B∗
2
TB1 = 0.

Hence, it follows that skρ(x),GIDindex,zρ(x) information theoretically reveals no information about

(Uρ(x),2, Ûρ(x),2), so (Uρ(x),2, Ûρ(x),2) and (U′
ρ(x),2, Û

′
ρ(x),2) are identically distributed. Thus,

for all x such that ρ(x) ∈ U \ SGIDj
, ciphertext components c2,x, ĉ2,x reveal no information

about B∗
2δ to the adversary A.

In conclusion, substituting (Uρ(x),2, Ûρ(x),2) with (U′
ρ(x),2, Û

′
ρ(x),2) (as described above) for all rows

x ∈ [n] of matrices M,N allows us to move from Hyb′3,j,1 to Hyb3,j,1.
Therefore, it follows that Hyb3,j,1 and Hyb′3,j,1 are statistically indistinguishable. This completes

the proof of Claim D.10.

Hybrid Hyb3,j,2. This is same as Hyb′3,j,1 except that for the jth global identifier GIDj , the chal-

lenger programs the output H1(GIDj) of the random oracle H1 as H1(GIDj) = J B1hGIDj
+B2h

′
GIDj

+B3 K2,

where hGIDj
,h′

GIDj

$←Zk
q .

Claim D.11. If SDG2
B2→B2,B3

assumption holds ( Assumption A.9), then, hybrids Hyb′3,j,1 and
Hyb3,j,2 are computationally indistinguishable for all j ∈ [q].

Proof. Similar to proof of Claim 4.8.

Hybrid Hyb′3,j,2. This is same as Hyb3,j,2 except that the ciphertext structure is changed as

follows: the first row of matrix W is changed from (B∗
2δ + γB∗

3)
T to γB∗

3
T , where and γ

$←Zq, that

is, W =

(
γB∗

3
T

Wbot

)
.

Claim D.12. If the game condition holds and ρ is injective, then, Hyb3,j,2 and Hyb′3,j,2 are statisti-
cally indistinguishable.

Proof. Similar to the proof of Claim D.8.

Claim D.13. If SDG2
B1→B1,B2

assumption holds ( Assumption A.9), then, hybrids Hyb′3,j,2 and Hyb3,j
are computationally indistinguishable for all j ∈ [q].

Proof. Similar to proof of Claim D.9.
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Hybrid Hyb4. This is same as hybrid Hyb3,q except that the ciphertext structure is changed

as follows: for all x ∈ [n], c2,x, ĉ2,x are computed using λx := Mx T , λ̂x := Nx T , where T

is same as T except that the first row is changed from tT to (t + τB∗
3)

T , where τ
$←Zq, that is

T =

(
(t+ τB∗

3)
T

Tbot

)
. We note that c0 remains unchanged, that is, the masking term is still tTk.

Claim D.14. If the game condition holds and ρ is injective, then, Hyb3,q and Hyb4 are statistically
indistinguishable.

Proof. Observe that the only difference between Hyb3,q and Hyb4 is in ciphertext components

c2,x, ĉ2,x for all x ∈ [n]. Observe that c2,x, ĉ2,x contains λx, Jλ̂xK1 respectively, where λx, λ̂x are

secret share of tT ∈ Z1×(2k+1)
q in Hyb3,q, but are secret share of (t+ τB∗

3)
T in Hyb4. Therefore, to

prove that the hybrids are statistically indistinguishable, we will argue that τB∗
3
T is information

theoretically hidden to the adversary A in Hyb4.
Since the adversary is not allowed to corrupt any attribute authorities appearing in the chal-

lenge ciphertext, the only possible way for A to get information about τB∗
3
T is through the

ciphertext components c2,x, ĉ2,x corresponding to all the rows x ∈ [n] of N. However, for each

such row x, A can only recover cTx , MxT + cTxVρ(x), NxT + cTx V̂ρ(x) information theoretically.

Without loss of generality, we can compute Vρ(x) := Vρ(x),1B
∗
1
T + Vρ(x),2B

∗
2
T + Vρ(x),3B

∗
3
T ,

where Vρ(x),1
$←Z(k+1)×k

q ,Vρ(x),2
$←Z(k+1)×k

q , and Vρ(x),3
$←Z(k+1)×1

q . Similarly, we can compute

V̂ρ(x) := V̂ρ(x),1B
∗
1
T + V̂ρ(x),2B

∗
2
T + V̂ρ(x),3B

∗
3
T , where V̂ρ(x),1

$←Z(k+1)×k
q , V̂ρ(x),2

$←Z(k+1)×k
q , and

V̂ρ(x),3
$←Z(k+1)×1

q . Let the first entry of Mx be mx, that is, Mx = (mx, . . .). Let the first entry of
Nx be nx, that is, Nx = (nx, . . .). Then, observe that we can write

Nx

(
(t+ τB∗

3)
T

Tbot

)
+ cTx V̂ρ(x)

= Nx

(
tT

Tbot

)
+Nx

(
τB∗

3
T

0

)
+ cTx V̂ρ(x)

= Nx

(
tT

Tbot

)
+ (nx, . . .)

(
τB∗

3
T

0

)
+ cTx V̂ρ(x)

= Nx

(
tT

Tbot

)
+ nxτB

∗
3
T + cTx V̂ρ(x)

= Nx

(
tT

Tbot

)
+ (nxτ + cTx V̂ρ(x),3)B

∗
3
T + cTx V̂ρ(x),1B

∗
1
T + cTx V̂ρ(x),2B

∗
2
T

≡ Nx

(
tT

Tbot

)
+ (cTx V̂

′
ρ(x),3)B

∗
3
T + cTx V̂ρ(x),1B

∗
1
T + cTx V̂ρ(x),2B

∗
2
T

where we can write V̂′
ρ(x),3 = V̂ρ(x),3 + ∆̂ such that nxτ = cTx ∆̂. Similarly, we can write

Mx

(
(t+ τB∗

3)
T

Tbot

)
+ cTxVρ(x)

≡Mx

(
tT

Tbot

)
+ (cTxV

′
ρ(x),3)B

∗
3
T + cTxVρ(x),1B

∗
1
T + cTxVρ(x),2B

∗
2
T
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where we can write V′
ρ(x),3 = Vρ(x),3 +∆ such that mxτ = cTx∆. Therefore, to complete the proof,

it suffices to argue that (Vρ(x),3, V̂ρ(x),3) and (V′
ρ(x),3, V̂

′
ρ(x),3) are identically distributed. We show

this next.
Observe that since ρ is injective, hence it follows that Vρ(x), V̂ρ(x) are fresh random matrices

and the only other place they appear is in secret key skρ(x),GID,zρ(x) . Due to the game condition

that |Sρ(x),GID| = 1, there can be only one such secret key per attribute ρ(x). Specifically, skρ(x),GID

information theoretically reveals (zρ(x)Vρ(x) + V̂ρ(x))k+ (zρ(x)Uρ(x) + Ûρ(x))(B1hGID +B3).
Since k is uniform random, we can equivalently write it as k := B1k1+B2k2+ k3B3 for uniform

random k1
$←Zk

q , k2
$←Zk

q , k3
$←Zq. Further, we can write Uρ(x) := Uρ(x),1B

∗
1
T + Uρ(x),2B

∗
2
T +

Uρ(x),3B
∗
3
T , where Uρ(x),1

$←Z(k+1)×k
q ,Uρ(x),2

$←Z(k+1)×k
q , and Uρ(x),3

$←Z(k+1)×1
q . Similarly, we can

write Ûρ(x) := Ûρ(x),1B
∗
1
T + Ûρ(x),2B

∗
2
T + Ûρ(x),3B

∗
3
T , where Ûρ(x),1

$←Z(k+1)×k
q , Ûρ(x),2

$←Z(k+1)×k
q ,

and Ûρ(x),3
$←Z(k+1)×1

q . Then observe that we can write

zρ(x)
(
Vρ(x)k+Uρ(x)B1hGID +Uρ(x)B3

)
+ V̂ρ(x)k+ Ûρ(x)B1hGID + Ûρ(x)B3

= zρ(x)
(
Vρ(x),1k1 +Vρ(x),2k2 + k3Vρ(x),3 +Uρ(x),1hGID +Uρ(x),3

)
+ V̂ρ(x),1k1 + V̂ρ(x),2k2 + k3V̂ρ(x),3 + Ûρ(x),1hGID + Ûρ(x),3

= zρ(x)

(
Vρ(x),1k1 +Vρ(x),2k2 + k3 V′

ρ(x),3 +Uρ(x),1hGID + Uρ(x),3

)
+ V̂ρ(x),1k1 + V̂ρ(x),2k2 + k3 V̂′

ρ(x),3 + Ûρ(x),1hGID + Û′
ρ(x),3

where we can write V′
ρ(x),3 = Vρ(x),3 + ∆, U′

ρ(x),3 = Uρ(x),3 − k3∆, V̂′
ρ(x),3 = V̂ρ(x),3 + ∆̂, and

Û′
ρ(x),3 = Ûρ(x),3 − k3∆̂, where ∆, ∆̂ are as defined above, that is, choose ∆ such that mxτ = cTx∆

and ∆̂ such that nxτ = cTx ∆̂. Therefore, (Vρ(x),3, V̂ρ(x),3) and (V′
ρ(x),3, V̂

′
ρ(x),3) are identically

distributed as long as (Uρ(x),3, Ûρ(x),3) and (U′
ρ(x),3, Û

′
ρ(x),3) are identically distributed. We show

this next. Observe that since ρ is injective, hence it follows that Uρ(x), Ûρ(x) are fresh random
matrix and other than skρ(x),GID,zρ(x) , the only other place they appears are in ciphertext components

c3,x, ĉ3,x. For ciphertext components c3,x, ĉ3,x corresponding to all the rows of M,N, A can recover
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MxW + cTxUρ(x), NxW + cTx Ûρ(x) information theoretically. Observe that we can write

NxW + cTx Ûρ(x)

= Nx

(
γB∗

3
T

Wbot

)
+ cTx Ûρ(x)

= Nx

(
γB∗

3
T

Wbot

)
+ cTx Ûρ(x),1B

∗
1
T + cTx Ûρ(x),2B

∗
2
T + cTx Ûρ(x),3B

∗
3
T

= Nx

(
γB∗

3
T

Wbot

)
+ cTx (k3∆̂)B∗

3
T + cTx Ûρ(x),1B

∗
1
T + cTx Ûρ(x),2B

∗
2
T + cTx Û

′
ρ(x),3B

∗
3
T

= Nx

(
γB∗

3
T

Wbot

)
+ nxk3τB

∗
3
T + cTx Ûρ(x),1B

∗
1
T + cTx Ûρ(x),2B

∗
2
T + cTx Û

′
ρ(x),3B

∗
3
T

= Nx

(
γB∗

3
T

Wbot

)
+Nx

(
k3τB

∗
3
T

0

)
+ cTx Ûρ(x),1B

∗
1
T + cTx Ûρ(x),2B

∗
2
T + cTx Û

′
ρ(x),3B

∗
3
T

= Nx

(
(γ + k3τ)B

∗
3
T

Wbot

)
+ cTx Û

′
ρ(x)

= Nx

(
γ′B∗

3
T

Wbot

)
+ cTx Û

′
ρ(x)

where we can write γ′ = γ + k3τ . Similarly, we can write

MxW + cTxUρ(x) = Mx

(
γ′B∗

3
T

Wbot

)
+ cTxU

′
ρ(x).

Therefore to complete this part of the proof, it suffices to argue that γ and γ′ are identically

distributed. This holds true because γ, k3, τ are uniform random, that is, γ, k3, τ
$←Zq.

In conclusion, substituting (Vρ(x),3,Uρ(x),3, V̂ρ(x),3, Ûρ(x),3, γ) with (V′
ρ(x),3,U

′
ρ(x),3, V̂

′
ρ(x),3, Û

′
ρ(x),3, γ

′)

(as described above) for all rows x ∈ [n] of matrices M,N allows us to move from Hyb4 to Hyb3,q.
Therefore, it follows that Hyb3,q and Hyb4 are statistically indistinguishable. This completes the

proof of Claim D.14.

Hybrid Hyb5. This is same as Hyb4 except that the ciphertext is changed to an encryption of a

random value, that is, c0 is changed from c0 := msgb · JtTkKT to c0 := ζ · JtTkKT , where ζ
$←GT .

Claim D.15. Hyb4 and Hyb5 are statistically indistinguishable.

Proof. Similar to proof of Claim 4.12

Claim D.16. In Hyb5, adversary A’s winning advantage is 0.

Proof. This holds because Hyb5 contains no information about challenge messages msg0 and msg1.

Thus, from Claims D.5 to D.16 and hybrid argument, it follows that Theorem 6.1 holds.
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GlobalSetup(1λ) :

1 : igp← inner.GlobalSetup(1λ)

2 : ogp← outer.GlobalSetup(1λ)

3 : ret gp := (igp, ogp)

AuthSetup(gp, i) :

1 : (imski, ipki)← inner.AuthSetup(igp, i)

2 : (omski, opki)← outer.AuthSetup(ogp, i)

3 : ret mski := (imski, omski), pki := (ipki, opki)

KGen(gp,mski,GID, zi) :

1 : iski,GID,zi ← inner.KGen(igp, imski,GID, zi)

2 : oski,GID ← outer.KGen(ogp, omski,GID)

3 : ret ski,GID,zi := (iski,GID,zi , oski,GID)

Enc(gp,msg ∈ GT , (M,N, ρ), {pkρ(i)}i∈[n]) :
1 : ict← inner.Enc(igp,msg, (M,N, ρ), {ipkρ(i)}i∈[n])

2 : Let U = {ρ(i) : i ∈ [n]} be the set of authorities appearing in the ASP policy

3 : Let PU = “conjunction of all authorities in set U” be a policy

4 : oct← outer.Enc(ogp, ict, PU , {opki}i∈U )

5 : ret ct := oct

Dec(gp, (M,N, ρ), ct,GID, {skρ(i),GID,zρ(i)}i∈[n]) :
1 : Let U = {ρ(i) : i ∈ [n]}
2 : Let PU = “conjunction of all authorities in set U” be a policy

3 : omsg← outer.Dec(ogp, PU , ct,GID, {oskρ(i),GID,zρ(i)}ρ(i)∈U )

4 : imsg← inner.Dec(igp, (M,N, ρ), omsg,GID, {iskρ(i),GID,zρ(i)})
5 : ret imsg

Figure 5: Compiler Construction: MA-ABE for ASP

E Generic Compiler for MA-ABE for ASP: boosting security:
Appendix

In this section, we provide the formal construction of the MA-ABE scheme presented in Section 7.
We also provide a proof sketch of its security.

Theorem E.1. Suppose we have the following two MA-ABE schemes:

• inner denoting an MA-ABE for ASP that is fully adaptively secure with Type 1 restriction
( Definition D.2),

• outer denoting an MA-ABE for conjunctions that is fully adaptively secure ( Definition A.6).

Then, MA-ABE scheme for ASP presented in Figure 5 is fully adaptive secure with Type 2 restriction
( Definition D.3).

Proof Sketch. Security proof roughly works as follows. Consider hybrids Hb
0, H

b
1 for b ∈ {0, 1} as

follows. Hb
0 is real-world encrypting msgb. H

b
1 is same as Hb

0 except that the game samples uniform
random β ∈ {0, 1} at the beginning, where β = 1 indicates a guess that event A will occur and
β = 0 indicates a guess that event A will not occur, where event A is: the adversary will satisfy the
condition “NO corrupt authority appears in challenge policy” at the end of the game. The rest of
the game proceeds same as Hb

0 except that the game aborts if the guess turns out to be wrong, that
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is, one of two things occur: “β = 1 and not event A” or “β = 0 and event A”. Next, we make two
claims.

Claim E.2. If there exists a p.p.t. adversary with distinguishing advantage ϵ in distinguishing
between its view in H0

0 and H1
0 , then, there exists a p.p.t. adversary with distinguishing advantage

ϵ/2 in distinguishing between its view in H0
1 and H1

1 .

Claim E.3. If the inner scheme MA-ABE for ASP is weak adaptive secure and if the outer scheme
MA-ABE for conjunction is fully adaptive secure, then, for any p.p.t. adversary, the distinguishing
advantage in distinguishing between its view in H0

1 and H1
1 is negligible.

From Claims E.2 and E.3, Theorem E.1 follows. All that remains to prove are Claims E.2
and E.3.

Claim E.2 follows from the fact that β ∈ {0, 1} is sampled uniformly at random in Hb
1 for

b ∈ {0, 1}.
To see Claim E.3, suppose there exists an adversary that distinguishes hybrids H0

1 and H1
1 with

non-negligible probability, then, we describe a reduction algorithm R that breaks either the weak
adaptive security of MA-ABE for ASP or breaks fully adaptive security of MA-ABE for conjunction.
The reduction R works as follows.

At the beginning, R samples uniform random β ∈ {0, 1}.
If β = 1, reduction R simulates MA-ABE for conjunction on its own and talks to challenger CASP

for the weak adaptive security game of MA-ABE for ASP. GlobalSetup and oracles AuthSetup, KGen,
Corrupt are handled in the natural way. For challenge query (m0,m1, (M,N, ρ)), it forwards the
query to the challenger CASP and obtains ciphertext ict encrypting message mb. Then it re-encrypts
ict with respect to policy “conjunction of all authorities in set U” to obtain ciphertext oct, where U
is the set of authorities appearing in policy (M,N, ρ). It returns oct to the adversary. Eventually
the adversary outputs a guess bit b′. At this point if it is the case that adversary did not corrupt
any authority appearing in the challenge ciphertext policy, then it forwards b′ to the challenger
CASP . Else it sends a random bit b̃ to the challenger.

If β = 0, reduction R simulates inner MA-ABE for ASP with weak adaptive security on its
own and talks to challenger Cconjunction for the fully adaptive security game of outer MA-ABE for
conjunction. GlobalSetup and oracles AuthSetup, KGen, Corrupt are handled in the natural way. For
challenge query (m0,m1, (M,N, ρ)), it locally computes ciphertexts ict0 and ict1 encrypting m0

and m1 respectively and sends challenge query (ict0, ict1, “conjunction of all authorities in set U”)
to the challenger Cconjunction and obtains ciphertext oct encrypting ictb, where U is the set of
authorities appearing in policy (M,N, ρ). It returns oct to the adversary. Eventually the adversary
outputs a guess bit b′. At this point if it is the case that adversary did corrupt any authority
appearing in the challenge ciphertext policy, then it forwards b′ to the challenger Cconjunction. Else

it sends a random bit b̃ to the challenger.
Observe that when β = 0, if the adversary is admissible and the guess β is correct, then, the

reduction is admissible in its game against challenger CASP . Further, when β = 1, if the adversary
is admissible and the guess β is correct, then, it must be the case that there exists an honest
authority appearing in the challenge ciphertext policy who did not issue any secret key. Thus the
conjunction policy is not satisfied and hence the reduction is admissible in its game against challenger
Cconjunction. Hence, in both cases β = 0 and β = 1, the reduction perfectly simulates the views Hb

1

to the adversary, where b is as chosen by the appropriate challenger (CASP or Cconjunction). Thus,
it follows that if there exists an adversary that distinguishes hybrids H0

1 and H1
1 with non-negligible

probability, then, the reduction algorithm R that breaks either the weak adaptive security of
MA-ABE for ASP or breaks fully adaptive security of MA-ABE for conjunction. This completes
the proof of Claim E.3 and hence the proof of Theorem E.1.

70



Table 2: Communication Efficiency: Comparison of fully adaptively secure decentralized
MA-ABE in prime order groups. All schemes are based on k-MDDH assumption in prime-order
asymmetric pairing groups, so we need k ≥ 1. n denotes the number of rows in the policy matrix

M (and also matrix N in case of ASP). In ciphertext

Scheme |mski| |pki| |ski,GID| |ct| Many-
use?

DKW23 [DKW23] 18k2|Zq| 6k2|G1| 6k|G2| 12nk|G1| No

Ours Section 4 (4k2 +6k+2)|Zq| (4k2 + 2k)|G1| (k + 1)|G2| n(5k + 3)|G1| No

Ours4 Section 6 (8k2+12k+4)|Zq| (8k2 + 4k)|G1| (k + 1)|G2| n(9k + 5)|G1| No

CCG+23 [CCG+23] (12k2 + 6k)|Zq| 6k2|G1| (4k + 2)|G2| n(10k+2)|G1| Yes

Ours Section 5 (8k2 + 4k)|Zq| (4k2 + 2k)|G1| 2k|G2| n(6k + 2)|G1| Yes

F Efficiency Analysis: Detailed

Notations for communication costs. We denote the size of the group G1 as |G1|, the size of
the group G2 as |G2|, and the size of the field Zq as |Zq|. We denote the size of the master secret key
mski as |mski|, the size of the public key pki as |pki|, the size of the secret key ski,GID as |ski,GID|,
and the size of the ciphertext ct as |ct|. We denote the number of rows in the policy matrix M as
n, and the number of columns in the policy matrix M as ℓ. We denote the set of attributes with
respect to which decryption is performed as S.

Notations for computation costs. For measuring computation costs, we note that there are
three different types of operations, each with different costs: group operation, exponentiation, pairing.
Typically group operation is faster than the other two by 3 orders of magnitude (See Table 4), so we
can ignore it in the comparison. We denote the number of exponentiations as #exponentiations, and
the number of pairings as #pairings. For #exponentiations, (count)i denotes the count for group Gi

where i ∈ {1, 2, T}.
Asymptotic efficiency of our schemes is summarized in Table 2 and Table 3. We note that the

communication and computation costs in Table 1 are obtained by substituting k = 1 in Tables 2
and 3.

Lastly, we present estimates of concrete computation costs in Table 4. To estimate concrete
computation costs, we use the BLS12-381 elliptic curve as a representative for instantiating prime-
order pairing groups. For the BLS12-381 elliptic curve, we use the microbenchmarks from [Tom22].
The numbers are for BLS12-381 curve implemented in Filecoin’s blstrs [fil] Rust wrapper around
the popular blst [sup] library. These microbenchmarks were run on a 10-core 2021 Apple M1 Max.
The computation costs in Table 4 are obtained by multiplying the number of operations in Table 1b
with the corresponding microbenchmark numbers in Table 5.

4Our MA-ABE for ASP satisfies weak adaptive security as defined in Definition D.2
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Table 3: Computation Efficiency: Comparison of fully adaptively secure decentralized
MA-ABE in prime order groups. All schemes are based on k-MDDH assumption in prime-order
asymmetric pairing groups, so we need k ≥ 1. n and ℓ denote the number of rows and columns in

the policy matrix M (and also matrix N in case of ASP) respectively. S denotes the set of
attributes with respect to which decryption is performed. For each algorithm, we specify a tuple of

three values: #group ops,#exponentiations,#pairings. For #group ops and #exponentiations,
(count)i denotes the count for group Gi where i ∈ {1, 2, T}.

Scheme AuthSetup KGen Enc Dec
DKW23
[DKW23] (18k

3
)1,

(18k
3
)1,

0

(18k
2
+ 3k)2,

(18k
2
)2,

0

(12nk
2
+ 6nkℓ + 3k

2
+ 6nk)1,

(12nk
2
+ 6nkℓ + 3k

2
+ 6(ℓ−1)k)1 + (3k)T ,

3k

(3k|S|)2 + ((12k + 4)|S|)T ,

(|S|)T ,

12k|S|

Ours Sec-
tion 4 (4k

3
+ 6k

2
+ 2k)1,

(4k
3
+ 6k

2
+ 2k)1,

0

(2k
2
+ 3k + 2)2,

(2k
2
+ 3k + 2)2,

0

(n(5k
2
+ 7k + 2))1 + (1)T ,

(n(5k
2
+ 7k + 2))1 + (1)T ,

0

((2k + 1)|S|)1 + ((3k + 5)|S| + 1)T ,

((2k + 1)|S|)1 + (|S|)T ,

(3k + 3)|S|

Ours Sec-
tion 6 (8k

3
+ 12k

2
+ 4k)1,

(8k
3
+ 12k

2
+ 4k)1,

0

(2k
2
+ 3k + 2)2,

(2k
2
+ 3k + 2)2,

0

(n(9k
2
+ 13k + 4))1 + (1)T ,

(n(9k
2
+ 13k + 4))1 + (1)T ,

0

((2k + 1)|S|)1 + ((7k + 7)|S| + 1)T ,

((6k + 3)|S|)1 + (|S|)T ,

(3k + 3)|S|

CCG+23
[CCG+23] (12k

3
+ 6k

2
)1,

(12k
3
+ 6k

2
)1,

0

(12k
2
+ 9k)2,

(12k
2
+ 6k)2,

0

(n(10k
2
+ 8k))1,

(n(10k
2
+ 8k))1 + (3k)T ,

3k

(3k|S|)2 + ((10k + 6)|S|)T ,

(|S|)T ,

(10k + 2)|S|

Ours Sec-
tion 5 (8k

3
+ 4k

2
)1,

(8k
3
+ 4k

2
)1,

0

(4k
2
+ 2k + 1)2,

(4k
2
+ 2k + 1)2,

0

(n(6k
2
+ 6k + 2))1 + (1)T ,

(n(6k
2
+ 6k + 2))1 + (1)T ,

0

((2k + 1)|S|)1 + ((4k + 4)|S| + 1)T ,

((2k + 1)|S|)1 + (|S|)T ,

(4k + 2)|S|

Table 4: Computation Efficiency over BLS12-381 elliptic curve: Comparison of fully
adaptively secure decentralized MA-ABE in prime order groups. All schemes are instantiated from
k-MDDH assumption in prime-order pairing groups, where k = 1. n and ℓ denote the number of
rows and columns in the policy matrix M (and also matrix N in case of ASP) respectively. S

denotes the set of attributes with respect to which decryption is performed.

Scheme AuthSetup KGen Enc Dec

DKW23
[DKW23]

1.296ms 2.448ms
(0.432nℓ+ 0.864n+ 0.432ℓ+
2.742)ms

(6.332|S|)ms

Ours Section 4 0.864ms 0.952ms (1.008n+ 0.5)ms (3.632|S|)ms

Ours Section 6 1.728ms 0.952ms (1.876n+ 0.5)ms (4.064|S|)ms

CCG+23
[CCG+23]

1.728ms 2.856ms (1.296n+ 4.458)ms (6.332|S|)ms

Ours Section 5 0.826ms 0.952ms (1.008n+ 0.5)ms (3.632|S|)ms

Table 5: Computation time of various operations: We recall the computation time of various
operations on the BLS12-381 elliptic curve from [Tom22]. The numbers are BLS12-381 curve
implemented in Filecoin’s blstrs [fil] Rust wrapper around the popular blst [sup] library. These

microbenchmarks were run on a 10-core 2021 Apple M1 Max.

Operation G1 G2 GT

group op 565ns 1484ns 1617ns

exponentiation 72µs 136µs 500µs

pairing 486µs
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