
Multi-Client Inner Product Encryption:
Function-Hiding Instantiations Without Random

Oracles

Elaine Shi and Nikhil Vanjani⋆

Carnegie Mellon University

Abstract. In a Multi-Client Functional Encryption (MCFE) scheme,
n clients each obtain a secret encryption key from a trusted authority.
During each time step t, each client i can encrypt its data using its
secret key. The authority can use its master secret key to compute a
functional key given a function f , and the functional key can be applied
to a collection of n clients’ ciphertexts encrypted to the same time step,
resulting in the outcome of f on the clients’ data. In this paper, we focus
on MCFE for inner-product computations.
If an MCFE scheme hides not only the clients’ data, but also the function
f , we say it is function hiding. Although MCFE for inner-product com-
putation has been extensively studied, how to achieve function privacy
is still poorly understood. The very recent work of Agrawal et al. showed
how to construct a function-hiding MCFE scheme for inner-product as-
suming standard bilinear group assumptions; however, they assume the
existence of a random oracle and prove only a relaxed, selective security
notion. An intriguing open question is whether we can achieve function-
hiding MCFE for inner-product without random oracles.
In this work, we are the first to show a function-hiding MCFE scheme
for inner products, relying on standard bilinear group assumptions. Fur-
ther, we prove adaptive security without the use of a random oracle. Our
scheme also achieves succinct ciphertexts, that is, each coordinate in the
plaintext vector encrypts to only O(1) group elements.
Our main technical contribution is a new upgrade from single-input func-
tional encryption for inner-products to a multi-client one. Our upgrade
preserves function privacy, that is, if the original single-input scheme
is function-hiding, so is the resulting multi-client construction. Further,
this new upgrade allows us to obtain a conceptually simple construction.

Keywords: multi-client functional encryption, adaptive security, bilinear group

1 Introduction

Multi-Input Functional Encryption (MIFE), first proposed by Goldwasser et
al. [GGG+14], allows us to evaluate certain functions on multiple users’ en-
crypted data. In MIFE, a trusted setup gives an encryption key to each of n

⋆ Author ordering is randomized.

users, and then each user i can use its encryption key to encrypt some value xi.
A data analyst can ask the trusted setup for a cryptographic token to evaluate
a specific function f . Equipped with the token, the data analyst can evaluate
the outcome f(x1, . . . , xn) when presented with n ciphertexts each encoding
x1, . . . , xn, respectively.

It is also well-understood that the MIFE formulation suffers from some limi-
tations. For instance, it does not make any attempt to limit the mix-and-match
of ciphertexts. The evaluator can take any combination of users’ ciphertexts, one
from each user, to evaluate the function f . As a simple example, imagine that two
users each encrypted two values, x0, x1 and y0, y1, respectively. Then, the eval-
uator can learn the outcome of f(xb0 , yb1) for any combination of b0, b1 ∈ {0, 1}.
In some applications, this may be too much leakage, and we want to limit the
extent of mix-and-match. As a result, a related notion called Multi-Client Func-
tional Encryption (MCFE) was introduced [SCR+11,GGG+14]. One way to un-
derstand the MCFE abstraction is to think of a “streaming” setting [SCR+11]:
imagine that in every time step t, each user i encrypts a value xi,t. Given the
ciphertexts, the evaluator can evaluate f(x1,t, . . . , xn,t) for each time step t, but
it cannot mix-and-match the ciphertexts across different time steps and com-
bine them in the evaluation. This greatly restricts the inherent leakage of the
scheme. More generally, MCFE schemes allow users to encrypt to a label t, and
only ciphertexts encrypted to the same label t can be used together during the
functional evaluation. MCFE has numerous applications. For example, it has
been applied to privacy-preserving, time-series data aggregation [SCR+11]. It
is also useful in federated learning [MR17, BIK+17] where a server may wish
to (incrementally) train some machine learning model based on data collected
from users’ mobile devices for each period of time. Very recent work also showed
that function-hiding MCFE schemes can be used to construct a non-interactive
anonymous routing scheme [SW21].

In vanilla MCFE schemes, our goal is to hide the plaintexts. However, in some
applications [SW21,AGT21b], we also want an additional privacy property: not
only should the ciphertexts hide the underlying messages, we also want the
tokens to hide the function f being evaluated. An MCFE scheme that achieves
this extra property is said to be function-hiding or function-private [AGT21b].

Status quo of our knowledge. The holy grail is to be able to construct MCFE
for general functions from standard assumptions. However, it is believed that
supporting general functions may be no easier than achieving indistinguishability
obfuscation [BV18,AJS15,KNT18]. On the other hand, assuming the existence
of indistinguishability obfuscation and the existence of a random oracle, we can
indeed construct (function-revealing) MCFE for general functions [GGG+14].

Given that indistinguishability obfuscation will unlikely become practical in
the near term, a natural question is for which functions can we construct effi-
cient MCFE schemes, and ideally from standard assumptions? Along this direc-
tion, a line of work has explored how to construct (function-revealing) MCFE
schemes for inner product computation, also called Multi-Client Inner-Product

2

Encryption (MCIPE)1. This exploration culminated in the work of Libert and
Titiu [LT19], who showed how to construct an adaptively secure, function-
revealing MCFE from standard lattice assumptions; and moreover, their scheme
achieves succinct ciphertexts (i.e., each client’s ciphertext size does not grow
w.r.t. the number of parties). An independent work of Abdalla et al. [ABG19] also
achieved almost the same result as Libert and Titiu [LT19], except that 1) they
can instantiate their constructions from DDH, LWE, or DCR assumptions; and
2) their ciphertexts are not succinct and grow linearly in the number of clients.
Besides the work of Libert and Titiu [LT19] and that of Abdalla et al. [ABG19],
all other MCIPE constructions, even in the function-revealing setting, rely on
random oracles for proving security [CDG+18a,ABM+20,CDG+18b].

When it comes to function privacy, however, our knowledge is relatively lit-
tle. So far, the only known function-hiding MCIPE construction is the elegant
work by Agrawal et al. [AGT21b], who constructed such a scheme from stan-
dard bilinear group assumptions, and additionally, assuming the existence of a
random oracle; moreover, their construction is only selectively secure. To date,
it remains elusive how to construct a function-hiding MCIPE scheme without
random oracles.

Therefore, the status quo of MCIPE begs the following natural questions:

1. Can we construct an MCIPE scheme with succinct ciphertexts from non-
lattice assumptions and without random oracles? This question is open even
for selective security and without requiring function privacy.

2. Can we construct a function-hiding MCIPE scheme from any standard as-
sumptions, without random oracles? This question is open even for selective
security, and even without caring about efficiency.

Recall that the recent lower bound result Ünal [Ü20] suggests that one cannot
hope to achieve function-private (even single-input) inner-product encryption
from lattices using a class of natural approaches. Therefore, being able to answer
the first question above could open up more avenues towards eventually getting
function privacy (i.e., the second question).

1.1 Our Results and Contributions

In this paper, we present a new MCIPE scheme from standard bilinear groups
assumptions (against polynomial-time adversaries), and we prove the scheme to
satisfy adaptive, function-hiding security. Our scheme is concretely efficient in
the sense that every coordinate in the plaintext vector encrypts to only O(1)
group elements, and every coordinate in a key vector will result in O(1) group
elements in the functional key.

Therefore, we not only provide an affirmative answer to the above open ques-
tions, we also achieve all the desirable properties in a single unifying construction.
More specifically, we prove the following theorem.
1 Throughout this paper, the term “inner-product encryption” always means “inner-

product functional encryption”. This terminology is standard in this space.

3

Table 1: Comparison with prior MCIPE schemes where Oλ(·) hides
terms related to the security parameter λ.

Scheme Assumptions Func privacy Adaptive per-coordinate CT

[CDG+18a] DDH + RO ✘ ✔ Oλ(1)

[ABG19] DDH or DCR or LWE ✘ ✔ Oλ(n)

[LT19] LWE ✘ ✔ Oλ(1)

[ABM+20] (bilinear or DCR or LWE)
✘ ✔ Oλ(1)+ RO

[AGT21b] bilinear + RO ✔ ✘ Oλ(1)

Our work bilinear ✔ ✔ Oλ(1)

Theorem 1. Suppose that the Decisional Linear (DLin) and Decisional Bilinear
Diffie-Hellman (DBDH) assumptions hold in suitable bilinear groups. There ex-
ists an MCIPE scheme that satisfies adaptive, function-hiding, indistinguishability-
based security. Moreover, the scheme achieves succinct ciphertext.

Techniques: a function-privacy-preserving upgrade from single-input
to multi-client. Notably, our MCIPE construction is conceptually simpler than
some prior (even function-revealing) constructions. Since the conceptual sim-
plicity could make it easier for future work to further extend and improve our
framework, we believe it yet another contribution made by our work.

To get our result, we describe a new upgrade from a single-input inner-
product encryption (IPE) to MCIPE. Further, if the underlying IPE scheme sat-
isfies adaptive function-hiding security, so does the resulting MCIPE scheme.
We believe our upgrade technique can be of independent interest. Previously,
a couple works [ABG19,AGT21b] also take the approach of upgrading from a
single-input IPE scheme; however, previous techniques suffer from several draw-
backs. Abdalla et al. [ABG19] showed how to upgrade a single-input IPE scheme
to a multi-client one. Their technique suffers from a couple drawbacks: 1) even
if the original IPE scheme is function-private, their upgrade does not preserve
function privacy; and 2) their upgrade incurs a Θ(n) blowup in the per-client
ciphertext size. The recent work of Agrawal et al. [AGT21b] can also be viewed
as an upgrade from a function-hiding IPE to a function-hiding MCIPE scheme
— however, as mentioned, their construction critically relies on a random oracle
and is only selectively secure.

We compare our contributions with prior work in Table 1 where n denotes
the total number of clients.

1.2 Additional Related Work

We now review related work, and explain why some of those ideas do not easily
extend to our new result.

4

Multi-input functional encryption. As mentioned, multi-input functional
encryption (MIFE), originally proposed by Goldwasser et al. [GGG+14], can be
viewed as a weakening of MCFE where all ciphertexts are encrypted to the same
label. This relaxation often makes constructing MIFE easier. For example, for
general functions, we know how to construct MIFE assuming indistinguishability
obfuscation and other standard cryptographic assumptions. However, when it
comes to MCFE for general functions, we not only need indistinguishability
obfuscation but also the random oracle model (unless we can publish separate
public parameters for each different label that will ever be encountered).

A line of work explored how to construct MIFE for inner-product from stan-
dard assumptions. This line culminated in the work of Abdalla et al. [ACF+18],
who showed a construction that satisfies adaptive function-hiding security, as-
suming standard bilinear group assumptions, and achieving succinct ciphertexts.
Again, their technique does not easily give rise to a multi-client counterpart. In
fact, without the use of a random oracle, we do not even know how to construct
a function-revealing non-lattice-based MCIPE scheme with succinct ciphertexts,
let alone a function-hiding one; and for getting function privacy, it is believed
that there may be potential barriers using lattice techniques [Ü20].

Recently, Agrawal et al. [AGT21a] showed how to construct MIFE for quadratic
functions — however, their scheme does not allow corruption of a subset of the
clients and therefore does not directly extend to the multi-client setting; more-
over, their scheme is not function hiding. Abdalla et al. [APS21] showed how
to construct a 2-round MCFE scheme for quadratic functions. In their construc-
tion, encryption involves a 2-round interaction between a client and a set of
authorities. Moreover, their scheme is not function hiding.

Throughout our paper (including Table 1), we assume static corruption. Be-
sides our notion of adaptive security where encryption and key queries can be
chosen adaptively by the adversary, Abdalla et al. [ABKW19, ABG19], Libert
and Titiu [LT19] and Nguyen et al. [NPP23] also considered a different, adap-
tive corruption notion, where the clients are corrupted in an adaptive fashion —
however, their constructions are non-function-hiding. Abdalla et al. [ABKW19]
constructed an MIFE scheme for adaptive corruptions but the scheme is not
function-hiding. Abdalla et al. [ABG19] and Libert and Titiu [LT19] obtained
similar results in the stronger multi-client setting from pairings and lattice as-
sumptions respectively. Nguyen et al. [NPP23] constructed MCFE with fine-
grained access control from pairings in the RO model. Our work can also secure
against adaptive corruption if we make sub-exponential assumptions and use
standard complexity leveraging techniques. To the best of our knowledge, no
known technique can achieve adaptive corruption for the function-hiding setting
without relying on complexity leveraging, even for multi-input inner-product en-
cryption, and even for selective-query security. How to achieve security against
adaptive corruption in the function-private setting is an open question. Our cur-
rent proof techniques adopt a sequence of hybrids that are incompatible with
adaptive corruption — this also applies to other known constructions with func-
tion privacy [AGT21b, SW21]: since we must answer the queries differently for

5

corrupt coordinates and honest coordinates, the current proof framework will
not work if the challenger does not have know this upfront.

The main challenge for adaptive corruption is that in our hybrid sequence,
we make use of a multiple-slot trick tailored for the function-hiding setting —
for example, switching from (x

(1)
i , 0m, . . .) and (y

∗(1)
i , 0m, . . .) to (x

(1)
i ,x

(0)
i) and

(y
∗(1)
i , 0m, . . .) for an honest coordinate i (see Hybrid Real1 to Hyb0 transition

in Table 2). For adaptive corruption, if i is not corrupt yet but will eventually
become corrupt, we should not make this switch for coordinate i — but we
cannot predict whether i will be eventually corrupt. In the function-revealing
schemes [ABKW19,ABG19,LT19,NPP23], their proofs do not rely on this type
of multiple-slot trick making it much easier to prove adaptive corruption.

Comparison with Shi and Wu [SW21]. Recently, the work of Shi and
Wu [SW21] considered a simple special case of inner-product, that is, “selec-
tion”. Selection is the task of selecting one coordinate from the plaintext vector,
i.e., inner product with a special vector where one coordinate is set to 1, and all
other coordinates are set to 0. They showed how to achieve a selective, function-
hiding MCFE scheme for selection. Shi and Wu’s framework cannot be easily
extended to get our result. First, their proof technique only works for prov-
ing selective security, whereas we want to prove adaptive security. Second, their
framework is tailored for selection and does not easily extend to general inner
product computation. Specifically, to construct a function-hiding MCFE scheme
for selection, they first construct a function-revealing MCFE scheme for selection
without RO, and then perform a function-privacy upgrade. We are not able to
follow the same paradigm, since Previously, it was not even known how to con-
struct a non-lattice-based, function-revealing MCIPE scheme without RO and
with succinct ciphertexts. The only known non-lattice-based, function-revealing
MCIPE scheme without RO is the elegant work by Abdalla et al. [ABG19].
Unfortunately, their scheme has an Θ(n) blowup in the ciphertext size that
we want to avoid. Although it is known how to construct a function-revealing
MCIPE scheme without RO using lattices [LT19], the recent lower bound result
Ünal [Ü20] suggests that one cannot hope to achieve function-private IPE from
lattices using a class of natural approaches.

Decentralizing MIFE and MCFE schemes. An elegant line of work [CDG+18a,
CDG+20, AGT21b, ACF+20] considers how to decentralize the key generation
in multi-input and multi-client functional encryption schemes. The resulting
schemes are typically referred to as ad-hoc MIFE [ACF+20] or as dynamic de-
centralized functional encryption (DDFE) [CDG+20,AGT21b]. Roughly speak-
ing, ad-hoc MIFE can be viewed as a generalization of MIFE, and DDFE can be
viewed as a generalization of MCFE, where the key generation can be performed
in a decentralized fashion without relying on a trusted party. This line of work
culminated in the recent work of Agrawal et al. [AGT21b] who constructed a
function-hiding DDFE scheme from bilinear groups in the random oracle model.
Therefore, an interesting question left open by our work is whether there exists a
function-hiding DDFE scheme from standard assumptions, without relying on a

6

random oracle. This question is open even for selective security and even without
caring about efficiency.

2 Overview of Our Constructions and Techniques

We now give an informal overview of our construction and proof techniques. In
our subsequent technical sections, we will present formal definitions, detailed
scheme description, and formal proofs.

Notations. Throughout, we will use boldface letters such as x to denote vectors.
Given a bilinear group G×G→ GT of prime order q, we use the notation JxK and
JxKT to denote the group encoding of x ∈ Zq in the source and target groups;
and a similar notation is used for vectors too.

2.1 Why Prior Work Needed a Random Oracle

The recent work of Agrawal et al. [AGT21b] suggested the following elegant
idea for constructing a function-hiding MCFE scheme for inner-product (also
called MCIPE). Let IPE be a function-hiding inner-product encryption scheme
(i.e., a single-input FE scheme for inner-product). We assume that IPE is built
from suitable bilinear groups. We additionally assume the following nice prop-
erty about IPE: the encryption algorithm (denoted Enc) and the functional key
generation algorithm (denoted KGen) should work even when taking in the
group encoding of the plaintext or key vector rather than the vector itself.

Let x = (x1, . . . ,xn) denote the plaintext vector where xi is the component
corresponding to client i ∈ [n]. let y = (y1, . . . ,yn) be the key vector where
y is the component corresponding to client i ∈ [n]. Agrawal et al. [AGT21b]’s
construction works as follows. Henceforth let H(·) be a random oracle and let
JρtK = H(t) which is a hash of the time step t (also called label).

Ciphertext: Functional key:
ct1 = IPE.Enc(imsk1, Jx1, ρtK) ⇔ isk1 = IPE.KGen(imsk1, Jy1, z1K)

...
...

ctn = IPE.Enc(imskn, Jxn, ρtK) ⇔ iskn = IPE.KGen(imskn, Jyn, znK)

In the above, each client i ∈ [n] has an independent IPE instance whose
master secret key is imski also chosen by the trusted setup; the terms z1, . . . , zn
are chosen freshly at random for each client respectively during each KGen
query, such that their summation is 0, that is, z1 + z2 + . . .+ zn = 0.

Henceforth, suppose H(t) = JρtK. To decrypt, we can IPE.Dec(cti, iski) to
obtain the partial decryption ⟨xi,yi⟩+ ρt · zi encoded as the exponent of some
group element. When we sum up all the partial decryptions, the part ρt · z1 +
ρt · z2 + . . .+ ρt · zn cancel out, and we are left with ⟨x,y⟩.

Intuitively, the ciphertext terms H(t) and key terms zi’s serve to re-randomize
each partial decryption. In this way, the adversary is forced to use all n clients’

7

ciphertext components from the same time step to yield a meaningful decryption
result. If the adversary mixes and matches ciphertext components from different
time steps, decryption gives garbage and no information is leaked. If the adver-
sary uses a proper subset of the clients’ ciphertext components but not all n of
them, decryption also gives garbage. Agrawal et al. [AGT21b]’s scheme critically
relies on a random oracle H(·) due to a combination of following reasons:

1. For functionality, the multiple clients must coordinate and put in a common
term that is multiplied with the zi’s during the decryption. Only in this
way, can the randomizing terms cancel out when all partial decryptions are
summed up;

2. For security, the aforementioned common term must be random, and not
only so, must be fresh for each time step t. Henceforth let H denote the set of
honest clients. Without going into full details about their proof, basically, in
some critical step in their hybrid sequence, they want to argue the following
computational indistinguishability statement for some “challenge key” which
involves the terms z∗1 , . . . , z

∗
n:

{Jρt · z∗i K}i∈H,t=1,2,3,...
c≡ {Ri,t}i∈H,t=1,2,3,... (1)

where {Ri,t}i∈H,t=1,2,3,... are randomly chosen group elements such that the
product is preserved in every time step, that is:

∀t :
∏
i∈H

Ri,t =
∏
i∈H

Jρt · z∗i K (2)

Agrawal et al. [AGT21b] argue that the above holds under the SXDH as-
sumption as long as each H(t) = JρtK is a random group element.

In summary, in the scheme by Agrawal et al., the random oracle H(·) allows
the clients to coordinate without communication, and adopt the same random
term that is refreshed for each t in their respective ciphertexts. One naïve way
to avoid the RO is for the trusted step to publish all random {JρtK}t=1,2,3...

terms in the sky upfront, but then the scheme would not be able to support an
unbounded number of time steps.

2.2 Removing the RO: A Strawman Idea

In Agrawal et al.’s scheme, the coordinated randomness z1, . . . , zn is part of
the functional key; therefore, in the ciphertext, all clients must put in shared
common randomness to pair with these terms. To remove the RO, a strawman
idea is move the coordinated randomness to the ciphertext. To this end, we will
employ a correlated pseudorandom function, denoted CPRF. In a CPRF scheme,
each client i ∈ [n] obtains a secret key Ki from a trusted setup. Then, given a
message t, the user can compute CPRF.Eval(Ki, t) to obtain an outcome that is
computationally indistinguishable from random, subject to the constraint that∑

i∈[n]

CPRF.Eval(Ki, t) = 0 (3)

8

Further, even when a subset of the clients may be corrupted, the outcomes
of the honest clients’ evaluations are nonetheless pseudorandom subject to the
constraint in Equation (3) — see Section 4.2 for the formal definition. Ear-
lier works have shown how to construct such a CPRF assuming the existence
of pseudorandom functions [BIK+17,ABG19]. With such a CPRF, we can con-
struct the following strawman scheme where we use the shorthand notation
CPRF(Ki, t) = CPRF.Eval(Ki, t), and z denotes a term shared across the dif-
ferent clients 1, . . . , n for the same functional key, but freshly chosen for every
functional key:

Ciphertext: Functional key:
ct1 = IPE.Enc(imsk1, (x1,CPRF(K1, t)) ⇔ isk1 = IPE.KGen(imsk1, (y1, z))

...
...

ctn = IPE.Enc(imskn, (xn,CPRF(Kn, t)) ⇔ iskn = IPE.KGen(imskn, (yn, z))

The use of the CPRF in the above allows the distributed clients to adopt
correlated randomness that is refreshed for each t at encryption time, and thus
avoids the RO. However, the strawman scheme does not work since the security
proof fails to go through. Let H denote the set of honest clients. In a criti-
cal step Agrawal et al.’s proof, they rely on the security of the IPE scheme to
hide the {z∗i }i∈H terms in some “challenge key”, and instead move information
about Jρt · z∗i Ki∈H,t=1,2,3,... into the ciphertext components — recall that in their
scheme, the term ρt · z∗i is the randomizing term that protects client i’s message
in the i-th partial decryption. They argue that the terms Jρt · z∗i Ki∈H,t=1,2,3,...

are computationally indistinguishable from random except their product is con-
served for every time step t — see Equations (1) and (2).

Unfortunately, this strategy no longer works, as now all the key components
share the same randomness z. When the adversary corrupts a subset of the
clients, it will learn info about the randomness Jz∗K in the challenge key. Addi-
tionally, the adversary can gain info about JCPRF(Ki, t)Ki∈H,t=1,2,3,... from the ci-
phertexts. Hence, the adversary can easily distinguish {JCPRF(Ki, t) · z∗K}i∈H,t=1,2,3,...

from random terms through a DDH-style attack. We stress that using asymmet-
ric group and SXDH does not fix this attack, as the ciphertext and the key must
come from opposite source groups to be paired with each other2.

2.3 Our Selectively Secure Construction

We start with the goal of achieving selective security (i.e., assuming that the ad-
versary must submit all KGen queries ahead of encryption queries), and later

2 In Appendix E of the online full version, we show that a variant of the strawman
scheme can indeed be proven secure in a different selective model, i.e., the adversary
must submit all encryption queries ahead of KGen queries. However, we do not
know any easy way to build from this selective scheme and get adaptive security
eventually.

9

describe additional techniques for achieving adaptive security. We sketch our se-
lectively secure construction below — a more formal presentation can be found in
subsequent technical sections. Recall that IPE denotes a function-hiding (single-
input) inner-product encryption scheme. In our scheme the public parameters are
just the public parameters of the underlying function-hiding secure IPE scheme.

– Setup: we run n independent instances of IPE.Setup to sample n secret
keys denoted imsk1, . . . , imskn, respectively. We also run the setup algorithm
of the CPRF, and obtain K1, . . . ,Kn. Finally, we generate a random ai

$←Zq

for each client i ∈ [n]. In summary, each client’s secret key is composed of
the terms (imski,Ki, ai), and the master secret key is simply the union of all
clients’ secret keys.

– KGen: an authority with the master secret key can compute a functional
key for the vector y = (y1, . . . ,yn) ∈ Zm·n

q as follows where ρ
$←Zq is fresh

randomness:

{iski := IPE.KGen(imski, ỹi)}i∈[n] where ỹi = (yi, 0
m, ρ,−ρai, 0)

– Enc: for client i ∈ [n] to encrypt xi ∈ Zm
q to some label t, it samples µi,t

$←Zq

if it has not been sampled before, and outputs the following ciphertext:

IPE.Enc (imski, x̃i)where x̃i =(xi, 0
m,CPRF.Eval(Ki, t) + aiµi,t, µi,t, 0)

– Dec: to decrypt, simply use each iski to decrypt the ciphertext cti from
the i-th client and obtain a partial decryption pi; then, output the discrete
log of

∏
i∈[n] pi. Since decryption requires computing discrete logarithm, the

outcome of the inner-product computation must lie within a polynomially-
bounded space for the decryption to be efficient.

We now show correctness. Suppose that ct1, . . . , ctn are n honestly generated
ciphertexts all for the same label t, and for plaintext vectors x1, . . . ,xn, respec-
tively. Further, suppose that (isk1, . . . , iskn) is the functional key for the vector
y = (y1, . . . ,yn). Then, applying iski to cti gives the partial decryption result

pi = J⟨xi,yi⟩+ ρ · CPRF.Eval(Ki, t) + ρ · aiµi,t − ρai · µi,tKT
= J⟨xi,yi⟩+ ρ · CPRF.Eval(Ki, t)KT

Therefore, when we compute the product
∏

i∈[n] pi, the part related to the CPRF

all cancel out, leaving us the term Jx,yKT where x := (x1, . . . ,xn).

Intuition. In comparison with the strawman scheme in Section 2.2, here we in-
troduce the additional term aiµi,t to protect the randomizing term CPRF.Eval(Ki

, t) in the ciphertext, where ai is part of the master secret key for client i. We also
introduce the extra term Jµi,tK to client i’s ciphertext component, and the extra
term J−ρaiK to client i’s key component, where ρ shared across all clients’ key
vectors but fresh for each key. These terms make sure that the newly introduced
aiµi,t term would cancel out during decryption, such that each client’s partial
decryption result is preserved as in the strawman scheme.

10

Table 2: Sequence of hybrids, where ⋆ denotes the most technical step to
be elaborate later. Here we show the vectors passed to the underlying IPE’s

Enc and KGen functions in each hybrid. Qkgen denotes the maximum number
of KGen queries made by the adversary. For conciseness, we write CPRF(Ki, t)
as a shorthand for CPRF.Eval(Ki, t). Note that the ρ term is sampled fresh at

random for each KGen query.

Hybrid Enc KGen assumption

Real1
(
x
(1)
i ,0,CPRF(Ki, t) + aiµi,t, µi,t, 0

) (
y
(1)
i ,0, ρ,−ρai, 0

)
Hyb0

(
x
(1)
i ,x

(0)
i ,CPRF(Ki, t) + aiµi,t, µi,t, 0

) (
y
(1)
i ,0, ρ,−ρai, 0

)
FH-IND of IPE

Hybℓ
ℓ ∈ [Qkgen]

same as
Hyb0

first ℓ:(
0,y

(0)
i , ρ,−ρai, 0

)
remaining:(

y
(1)
i ,0, ρ,−ρai, 0

) explained
below ⋆

Hyb∗
(
0,x

(0)
i ,CPRF(Ki, t) + aiµi,t, µi,t, 0

) (
0,y

(0)
i , ρ,−ρai, 0

)
FH-IND of IPE

Real0
(
x
(0)
i ,0,CPRF(Ki, t) + aiµi,t, µi,t, 0

) (
y
(0)
i ,0, ρ,−ρai, 0

)
FH-IND of IPE

In our security proof, we will rely on the security of IPE to hide the J−ρ∗ · aiKi∈H
terms pertaining to honest clientsH from some “challenge key” whose shared ran-
domness is ρ∗, and instead move information about {Jρ∗ · CPRF.Eval(Ki, t)K}i∈H,t=1,2,3,...

to the honest clients’ ciphertext components (see hybrid Hℓ−1,1 in Section 2.4).
We then argue that under the Decisional Linear assumption, the terms {Jρ∗ ·
CPRF.Eval(Ki, t)K}i∈H,t=1,2,3,... are computationally indistinguishable from ran-
dom terms such that for each t their product is conserved (see hybrid Hℓ−1,3 of
Section 2.4). Moreover, the above should hold even when the adversary may have
information about Jρ∗K (from knowledge of the challenge key and corrupt clients’
master secret keys), {JCPRF.Eval(Ki, t)K}i∈H,t=1,2,3,... (from honest clients’ ci-
phertexts), and {Jρ · aiK}i∈H for any ρ contained in a non-challenge key (from
knowledge of non-challenge keys).

2.4 Proving Selective Function-Hiding Security

We first describe how to prove selective, function hiding security, assuming that
the underlying IPE scheme satisfies selective, function-hiding, indistinguishability-
based security, the CPRF scheme is secure, and that the Decisional Linear prob-
lem is computationally hard. Later in Section 2.5, we discuss the additional
techniques needed for proving adaptive security.

To prove that our scheme satisfies selective function-hiding indistinguishability-
based security, we need to go through a sequence of hybrids as shown in Table 2.
Note that Table 2 shows only how the challenger generates ciphertext and key
components for an honest client i ∈ [n]. For a corrupted client i, the security

11

game stipulates that x(0)
i = x

(1)
i and y

(0)
i = y

(1)
i , and thus the challenger simply

runs the honest Enc or KGen algorithm as in the real world.
The steps where we apply the function-hiding indistinguishability security

(denoted FH-IND in Table 2) of the underlying IPE are relatively straightfor-
ward. The most technical part in the proof is to argue that Hybℓ−1 is compu-
tationally indistinguishable from Hybℓ for ℓ ∈ [Qkgen], where we are switching
the keys queries one by one from world 1 to world 0. In Hybℓ−1, the first ℓ − 1

key queries are answered using y∗(0), whereas the remaining are answered using
y∗(1). We want to switch the ℓ-th key query to using y∗(0) instead which will
lead to Hybℓ. To this end, we carry out another sequence of inner hybrids as
shown in Table 3. We first rely on the security of the IPE scheme to accomplish
the following (see the experiment Hℓ−1,1):

1. move information about JCPRF(Ki, t)ρ
∗ + ⟨x(1)

i ,y
∗(1)
i ⟩Ki∈H,t=1,2,3,... from the

key to the honest ciphertexts, where ρ∗ denotes the shared randomness in
the challenge key query; and

2. remove information about Jρ∗aiKi∈H from the challenge key.

At this moment, we can switch the JCPRF(Ki, t)ρ
∗Ki∈H,t=1,2,3,... terms in the

honest ciphertexts to random denoted JTi,tKi∈H,t=1,2,3,... (subject to the con-
straint that their product is preserved in each time step t), and uncorrelate these
terms with the other ciphertext terms containing information about CPRF(Ki, t).
This can be accomplished through a reduction to the security of the CPRF and
the Decisional Linear assumption (hybrids Hℓ−1,2 and Hℓ−1,3). The Decisional
Linear step is arguably the most technical step in our selective security proof,
and we provide the detailed proof in Claim 4 in the subsequent formal sections
(see also the intuition in Section 2.3).

At this moment, we can switch the terms JTi,t + ⟨x(1)
i ,y

∗(1)
i ⟩Ki∈H,t=1,2,3,...

contained in the honest ciphertexts to JTi,t + ⟨x(0)
i ,y

∗(0)
i ⟩Ki∈H,t=1,2,3,... through

an information theoretic step. For this step to hold, we rely on the admissibility
rule imposed on the adversary, that is, for any honest plaintexts

{(
x
(0)
i ,x

(1)
i

)}
i∈H

queried for the same label t, and for any pair of key vectors queried
(
y(0),y(1)

)
,〈

{x(0)
i }i∈H, {y(0)

i }i∈H

〉
=
〈
{x(1)

i }i∈H, {y(1)
i }i∈H

〉
(4)

This admissibility rule implies that if for some i ∈ H, the pair (x
(0)
i ,x

(1)
i) and

the pair (x̃
(0)
i , x̃

(1)
i) were queried on the same label t, then the following must

hold for any key pair (y(0),y(1)) queried:〈
x
(0)
i ,y

(0)
i

〉
−
〈
x̃
(0)
i ,y

(0)
i

〉
=
〈
x
(1)
i ,y

(1)
i

〉
−
〈
x̃
(1)
i ,y

(1)
i

〉
(5)

Finally, we can go through symmetric steps mirroring the first half of proof, and
eventually arrive at Hybℓ.

12

Table 3: Selective security: inner hybrids to go from Hybℓ−1 to Hybℓ.
y∗(b) := (y

∗(b)
1 , . . . ,y

∗(b)
n) for b ∈ {0, 1} denote the key vectors submitted in the

ℓ-th KGen query, and ρ∗ is the randomness used in the ℓ-th KGen query.

Hybrid assumption

Hybℓ−1 see Table 2

Hℓ−1,1

Enc :(
x
(1)
i ,x

(0)
i ,CPRF(Ki, t) + aiµi,t, µi,t,CPRF(Ki, t) · ρ∗ + ⟨x(1)

i ,y
∗(1)
i ⟩

)
KGen : first ℓ− 1:

(
0m,y

(0)
i , ρ,−ρai, 0

)
ℓ-th: (0m, 0m, 0, 0, 1)

remaining:
(
y
(1)
i , 0m, ρ,−ρai, 0

)
FH-IND

of
IPE

Hℓ−1,2

Enc :
(
x
(1)
i ,x

(0)
i , Ri,t + aiµi,t, µi,t, Ri,t · ρ∗ + ⟨x(1)

i ,y
∗(1)
i ⟩

)
where

∑
i∈H Ri,t = −

∑
i∈K CPRF(Ki, t)

KGen : same as Hℓ−1,1

correlated
pseudorand.

of CPRF

Hℓ−1,3

Enc :
(
x
(1)
i ,x

(0)
i , Ri,t + aiµi,t, µi,t, Ti,t + ⟨x(1)

i ,y
∗(1)
i ⟩

)
where

∑
i∈H Ti,t = −ρ∗ ·

∑
i∈K CPRF(Ki, t)

KGen : same as Hℓ−1,1

DLin

H′
ℓ−1,3

Enc :
(
x
(1)
i ,x

(0)
i , Ri,t + aiµi,t, µi,t, Ti,t + ⟨x(0)

i ,y
∗(0)
i ⟩

)
where

∑
i∈H Ti,t = −ρ∗ ·

∑
i∈K CPRF(Ki, t)

KGen : same as Hℓ−1,1

identically
distributed

H′
ℓ−1,2

Enc :
(
x
(1)
i ,x

(0)
i , Ri,t + aiµi,t, µi,t, Ri,t · ρ∗ + ⟨x(0)

i ,y
∗(0)
i ⟩

)
where

∑
i∈H Ri,t = −

∑
i∈K CPRF(Ki, t)

KGen : same as Hℓ−1,1

DLin

H′
ℓ−1,1

Enc :(
x
(1)
i ,x

(0)
i ,CPRF(Ki, t) + aiµi,t, µi,t,CPRF(Ki, t) · ρ∗ + ⟨x(0)

i ,y
∗(0)
i ⟩

)
KGen : same as Hℓ−1,1

correlated
pseudorand.

of CPRF

Hybℓ see Table 2
FH-IND

of
IPE

13

2.5 Achieving Adaptive Function-Hiding Security

We need additional techniques for proving adaptive security. To aid understand-
ing, it helps to first observe why our previous proof is inherently selective. In
a critical step (i.e., from Hybℓ−1 to Hybℓ) where we switched the challenge key
(i.e., the ℓ-th key query) from (y

∗(1)
i ,0, ρ∗,−ρ∗ai, 0) to (0,y

∗(0)
i , ρ∗,−ρ∗ai, 0), we

need to go through an inner hybrid experiment where we remove information
about {ρ∗ai}i∈H from the honest clients’ key components, and instead encode
information about {CPRF(Ki, t) · ρ∗ + ⟨x(1)

i ,y
∗(1)
i ⟩}i∈H into the ciphertexts (see

the experiment Hℓ−1,1). In this step, we made use of the fact that the challenger
knows the challenge key vector y∗ upfront.

In adaptive security, the adversary need not commit to all the key queries
upfront. A naïve approach to prove adaptive security is via complexity leverag-
ing, i.e., the challenger guesses the challenge key query upfront, and abort the
experiment if the guess turns out to be wrong later. The problem with this ap-
proach is that it incurs exponential loss in the security failure, and therefore we
would have to make the underlying computationally assumptions secure against
sub-exponential time adversaries to absorb this security loss. By contrast, our
approach does not incur such a loss in security, and we can thus reduce the
adaptive function-hiding security of our MCIPE scheme to standard assump-
tions against polynomial-time adversaries.

Specifically, we show that the scheme described in Section 2.3, when in-
stantiated with a particular IPE scheme that satisfies adaptive, function-hiding
indistinguishable security, the resulting MCIPE scheme would indeed satisfy
function-hiding, adaptive security. To prove this, we can no longer treat the
underlying IPE as a blackbox as in our selective security proof. We need to
completely unwrap the construction and rely on properties of the specific IPE
employed to prove adaptive security. Our proof techniques are inspired by those
of Abdalla et al. [ACF+18], who constructed an adaptively secure, multi-input
inner-product encryption (MIIPE). MIIPE can be considered as a special case of
MCIPE where all ciphertexts have the same label (or time step). This relaxation
makes it easier to construct MIIPE. Therefore, the adaptive function-hiding MI-
IPE scheme by Abdalla et al. [ACF+18] does not easily imply a multi-client
counterpart. In particular, for MCIPE, unless we are willing to tolerate linear
in n ciphertext size per client, all known non-lattice-based constructions require
RO, even for function-revealing constructions [CDG+18a,ABM+20,AGT21b].

Our adaptively secure scheme. Concretely, we first apply the function-
privacy upgrade of Lin [Lin17] to an adaptively secure, function-revealing IPE
scheme of Abdalla et al. [ACF+18], resulting in an adaptively secure, weak-
function-hiding IPE scheme. We then use the resulting IPE scheme to instantiate
our MCIPE scheme described in Section 2.3. The resulting MCIPE scheme, when
unwrapped, is as follows — it turns out that we will not need the last slot in the
ciphertexts and keys for each client in our adaptive proof, so we remove it from
this construction:

14

– Setup: we generate ai
$←Zq and random matrices Ai,Bi

$←Z(k+1)×k
q of full

rank k, Ui
$←Z(2m+2)×(k+1)

q , Vi
$←Z(2m+k+3)×(k+1)

q for each client i ∈ [n]. We
also run the setup algorithm of the CPRF, and obtain K1, . . . ,Kn. In sum-
mary, each client’s secret key is composed of the terms (Ai,Bi,Ui,Vi,Ki, ai),
and the master secret key is simply the union of all clients’ secret keys.

– KGen: an authority with the master secret key can compute a functional key
for the vector y = (y1, . . . ,yn) ∈ Zm·n

q as follows where ỹi = (yi, 0
m, ρ,−ρai)

for some fresh random ρ
$←Zq, ti

$←Zk
q :{

JdiK = J
(
I,Ui

)T
ỹi +ViBitiK, Jd′

iK = J−BitiK
}
i∈[n]

– Enc: for client i ∈ [n] to encrypt a vector xi ∈ Zm
q to some label t, it samples

µi,t
$←Zq if it has not been sampled before, and outputs the following:(

JciK = J
(
(x̃i +UiAisi)

T , (−Aisi)
T
)T K, Jc′iK = JVT

i ciK
)

where x̃i =(xi, 0
m,CPRF.Eval(Ki, t) + aiµi,t, µi,t)

– Dec: to decrypt, simply compute e
(
JcTi K, JdiK

)
· e
(
Jc′Ti K, Jd′

iK
)

for the i-
th client and obtain a partial decryption pi; then, output the discrete log
of
∏

i∈[n] pi. Since decryption requires computing discrete logarithm, the
outcome of the inner-product computation must lie within a polynomially-
bounded space for the decryption to be efficient.

Proof roadmap for adaptive security. In our adaptive proof, the outer hy-
brids remain the same as in Table 2 except that we now need the underlying
IPE scheme to have adaptive function-hiding security for make the switches. To
switch from Hybℓ−1 to Hybℓ, we can no longer rely on the previous sequence of
inner hybrids (Table 3). Instead, we provide a new sequence of inner hybrids
outlined in Table 4.

As shown in Table 4, there are a couple important differences between the pre-
vious selective proof and our new adaptive proof. In the selective proof, we switch
the challenge key query to IPE functional keys of the vector (0m, 0m, 0, 0, 1).
This allowed us to erase not just information about {ρ∗ai}i∈H, but also in-
formation about the challenge vector {y∗(1)

i }i∈H from the challenge key. In-
stead, this information is moved to the honest ciphertexts reflected in the terms
JCPRF(Ki, t) · ρ∗ + ⟨x(1)

i ,y
∗(1)
i ⟩Ki∈H,t=1,2,3,.... But this would require the chal-

lenger to know the challenge vector in advance, which we now want to avoid.
In our adaptive proof, we instead switch the challenge key query to IPE func-

tional keys of the vector (y∗(1)
i , 0m, 0, 0). Here we only remove information about

{ρ∗ai}i∈H from the challenge key, but we retain information about the challenge
vector {y∗(1)

i }i∈H. Therefore, we only move the terms JCPRF(Ki, t) · ρ∗Ki∈H,t=1,2,3,...

to the honest ciphertexts, and the challenger need not know the challenge key
vector in advance to do so. Not only so, here, to make this switch, we rely on the

15

structure of the underlying IPE in a non-blackbox fashion (see hybrids Hℓ−1,1 and
Hℓ−1,2). At this moment, we switch the challenge key from using (y

∗(1)
i , 0m, 0, 0)

to (0m,y
∗(0)
i , 0, 0) for all i ∈ H. To make this switch, we make non-blackbox

usage of the structure of the underlying IPE, and argue that this switch can be
made without affecting the distribution at all, i.e., Hℓ−1,4 and H′

ℓ−1,4 are iden-
tically distributed, as long as the adversary satisfies the admissibility rule stated
in Equation (4) which also implies Equation (5). The rest of the proof takes
mirroring steps as the first half to eventually reach hybrid Hybℓ.

The formal proof of adaptive, function-hiding security will be presented in
Appendix B.4 of the online full version.

Why we use IPE in a non-blackbox way. In our hybrid sequence for both
selective and adaptive proofs, at some point of time we need to switch the inner
products from ⟨x(1)

i ,y
∗(1)
i ⟩ to ⟨x(0)

i ,y
∗(0)
i ⟩. This step cannot rely on the function-

hiding security of IPE because it is possible that ⟨x(1)
i ,y

∗(1)
i ⟩ ≠ ⟨x(0)

i ,y
∗(0)
i ⟩ for

some honest user i ∈ H. So, our idea is to make this switch in a way that the
two resulting distributions are identically distributed (Hℓ−1,3 to H′

ℓ−1,3 in the
selective proof in Table 3 and Hℓ−1,4 to H′

ℓ−1,4 in the adaptive proof in Table 4).
To make this switch in the selective proof, we first switch to a hybrid (Hℓ−1,3

in Table 3) in which ⟨x(1)
i ,y

∗(1)
i ⟩ is in the ciphertext, where we rely on the exter-

nal randomizing terms Ti,t to mask ⟨x(1)
i ,y

∗(1)
i ⟩. However, using this technique

means we have to know the key queries upfront.
In our adaptive proof, we need to find another way for the proof to go through

without knowledge of the key queries. The key step is going from Hℓ−1,4 to
H′

ℓ−1,4 in Table 4, where we switch the key from (y
∗(1)
i , 0m, . . .) to (0m,y

∗(0)
i , . . .).

Here, we argue that making the switch does not affect the distribution if the
admissibility rule holds — to do so, we rely on the internal randomness inside the
(single-input) IPE scheme, since we no longer can leverage the external random
masks Ti,t as before.

Why Tomida’s techniques do not work. We compare with Tomida [Tom20]
and explain why their techniques do not work in the online full version.

2.6 Removing the “All-or-Nothing” Admissibility Rule

So far, our scheme is proven secure in an “all-or-nothing” query setting, that is, for
every label t, the adversary must either make at least one ciphertext query on be-
half of every honest client, or make none such queries at all. Although it is known
that one can remove this restriction on the adversary by wrapping the MCIPE
ciphertexts inside a layer of “all-or-nothing encryption” [CDG+18b, CDG+20,
AGT21b], we cannot use the existing techniques as is to get adaptive security
and succinct ciphertext at the same time. Recall that in an all-or-nothing en-
cryption (AoNE) scheme [CDG+18b,CDG+20,AGT21b], if one collects n clients’
ciphertexts encrypted to the same label t, then all of them can be decrypted.
Otherwise if the collection is not complete for some label t, then no ciphertext
encrypted to t can be decrypted and all the plaintexts are kept secret.

16

Table 4: Adaptive security: inner hybrids to go from Hybℓ−1 to Hybℓ.
y∗(b) := (y

∗(b)
1 , . . . ,y

∗(b)
n) for b ∈ {0, 1} denote the key vectors submitted in the ℓ-th

KGen query, and ρ∗ is the randomness used in the ℓ-th KGen query. Values ui in
Hℓ−1,1, . . . ,H

′
ℓ−1,1 and b⊥

i in Hℓ−1,2, . . . ,H
′
ℓ−1,2 are sampled once ∀i ∈ [n] at Setup.

Hybrid assumption

Hybℓ−1

Enc : ci =
(
(x̃i +UiAisi)

T , (−Aisi)
T
)T

, c′i = VT
i ci

where x̃i =
(
x
(1)
i ,x

(0)
i ,CPRF(Ki, t) + aiµi,t, µi,t

)
KGen : di =

(
I,Ui

)T
ỹi +ViBiti, d′

i = −Biti,
where ỹi is as follows based on which KGen query it is:
first ℓ− 1:

(
0m,y

(0)
i , ρ,−ρai

)
, else:

(
y
(1)
i , 0m, ρ,−ρai

)
Hℓ−1,1

Enc : same as Hybℓ−1

KGen : di =
(
I,Ui

)T
ỹi +Vi(Biti + ui), d′

i = −(Biti + ui),

where ui ← Zk+1
q \ span(Bi) and ỹi is same as Hybℓ−1

k-MDDH

Hℓ−1,2

Enc : ci, x̃i : same as Hℓ−1,1, c′i = VT
i ci−(b⊥

i)ρ
∗CPRF(Ki, t)

where b⊥
i ← orth(Bi) s.t. ⟨ui,b

⊥
i ⟩ = 1

KGen : di,d
′
i : same as Hℓ−1,1 except

ỹi is as follows based on which KGen query it is:
ℓ-th:

(
y
∗(1)
i , 0m, 0, 0

)
, else: same as Hℓ−1,1

identically
distributed

Hℓ−1,3

Enc : ci : same as Hℓ−1,1 except x̃i =
(
x
(1)
i ,x

(0)
i , Ri,t + aiµi,t, µi,t

)
c′i = VT

i ci − (b⊥
i)ρ

∗Ri,t where∑
i∈H Ri,t = −

∑
i∈K CPRF(Ki, t)

KGen : same as Hℓ−1,2

correlated
pseudorand.

of CPRF

Hℓ−1,4

Enc : ci, x̃i : same as Hℓ−1,1, c′i = VT
i ci − (b⊥

i)Ti,t

where
∑

i∈H Ti,t = −ρ∗
∑

i∈K CPRF(Ki, t)

KGen : same as Hℓ−1,2

DLin

H′
ℓ−1,4

Enc : same as Hℓ−1,4

KGen : di,d
′
i : same as Hℓ−1,4 except ỹi is as follows

based on which KGen query it is:
ℓ-th:

(
0m,y

∗(0)
i , 0, 0

)
, else: same as Hℓ−1,1

identically
distributed

H′
ℓ−1,3

Enc : ci, x̃i : same as Hℓ−1,1, c′i = VT
i ci − (b⊥

i)ρ
∗Ri,t

where
∑

i∈H Ri,t = −
∑

i∈K CPRF(Ki, t)

KGen : same as H′
ℓ−1,4

DLin

H′
ℓ−1,2

Enc : ci : same as Hℓ−1,1, c′i = VT
i ci − (b⊥

i)ρ
∗CPRF(Ki, t)

x̃i =
(
x
(1)
i ,x

(0)
i ,CPRF(Ki, t) + aiµi,t, µi,t

)
KGen : same as H′

ℓ−1,4

correlated
pseudorand.

of CPRF

H′
ℓ−1,1

Enc : ci, x̃i : same as Hℓ−1,1, c′i = VT
i ci

KGen : di,d
′
i : same as H′

ℓ−1,2 except ỹi is as follows
based on which KGen query it is:
ℓ-th:

(
0m,y

∗(0)
i , ρ∗,−ρ∗ai

)
, else: same as Hℓ−1,1

identically
distributed

Hybℓ see Table 2 k-MDDH

17

Unfortunately, previous AoNE constructions [CDG+20, CDG+18b] are ei-
ther not efficient in the sense that the per-client ciphertext size grows linearly
with respect to the number of parties [CDG+20]; or rely on a random ora-
cle [CDG+20,CDG+18b]. Moreover, it is also not clear how to extend the existing
proof techniques (for removing the “all-or-nothing” query restriction) to the adap-
tive function-hiding setting while retaining succinct ciphertext size [CDG+20,
CDG+18b,ABG19].

We propose new techniques for performing this upgrade without asymptoti-
cally blowing up the ciphertext size, without random oracles, while retaining the
adaptive function-hiding security. To make this work, we additionally make the
following contributions:

– In Appendix C of the online full version, we construct a new, adaptively secure
AoNE scheme that achieves succinct ciphertexts, and reduce its security to
Decisional Bilinear Diffie-Hellman assumption.

– Even with an adaptively secure AoNE scheme, it turns out to be difficult to
directly prove the security of the upgraded scheme in the adaptive function-
hiding setting. We overcome this challenge by introducing a stepping stone:
we first prove that the upgraded construction satisfies a relaxed notion called
adaptive weak-function-hiding security. We then rely on standard techniques [Lin17,
SW21] to upgrade the resulting adaptive weak-function-hiding MCIPE scheme
to one that satisfies full adaptive function-hiding security.

We defer the detailed exposition of these new techniques to Appendices C
and D of the online full version.

3 Definitions: Multi-Client Inner Product Encryption

Henceforth, we use m to denote the number of coordinates encrypted by each
client, and use n to denote the number of clients. In a Multi-Client Inner-Product
Functional Encryption (MCIPE) scheme, in every time step, each client i ∈ [n]
encrypts a vector xi ∈ Zm

q using its private key eki. An authority holding a
master secret key msk can generate a functional key sky for a vector y ∈ Zmn

q =
(y1,y2, . . . ,yn) where each yi ∈ Zm

q . One can now apply the functional key sky
to the collection of all n clients’ ciphertexts belonging to the same time step,
and an evaluation procedure gives the result ⟨x,y⟩ where x := (x1, . . . ,xn).

We use a standard notion of selective indistinguishability for multi-client
inner-product encryption [AGT21b]. In this standard definition, the time step t
is generalized and encoded as an arbitrary label, and only ciphertexts encrypted
to the same label can be combined during the decryption process. Mix-and-match
among ciphertexts encrypted to different labels should be prevented; however,
mix-and-match among the same label is allowed. Formally, an MCIPE scheme
consists of the following possibly randomized algorithms:

– pp← Gen(1λ): the parameter generation algorithm Gen takes in a security
parameter λ and chooses parameters pp — we will assume that pp contains a

18

λ-bit long prime number q ∈ N and the description of a suitable cyclic group
G of prime order q.

– (mpk,msk, {eki}i∈[n]) ← Setup(pp,m, n): takes in the parameters q, G, m,
and n, and outputs a public key mpk, a master secret key msk, and n user
secret keys needed for encryption, denoted ek1, . . . , ekn, respectively. Without
loss of generality, henceforth we may assume that mpk encodes pp so we need
not write the parameters pp explicitly below.

– sky ← KGen(mpk,msk,y): takes in the public key mpk, the master secret
key msk, and a vector y ∈ Zmn

q , and outputs a functional secret key sky.
– cti,t ← Enc(mpk, eki,xi, t): takes in the public key mpk, a user secret key

eki, a plaintext xi ∈ Zm
q , and a label t ∈ {0, 1}∗, outputs a ciphertext cti,t.

– v ← Dec(mpk, sky, {cti,t}i∈[n]): takes in the public key mpk, the functional
secret key sky, and a collection of ciphertexts {cti,t}i∈[n], outputs a decrypted
outcome v ∈ Zq.

Correctness. For correctness, we require that for any λ ∈ N, for any pp :=
(q, . . .) in the support of Gen(1λ), the following holds with probability 1 for any
m,n ∈ N: for any y ∈ Zmn

q , and any x := (x1, . . . ,xn) ∈ Zn
q , and any t ∈ {0, 1}∗:

let (mpk,msk, {eki}i∈[n])← Setup(pp,m, n), let sky ← KGen(mpk,msk,y), let
cti,t ← Enc(mpk, eki,xi, t) for i ∈ [n], and let v ← Dec(mpk, sky, {cti,t}i∈[n]}),
it must be that v = ⟨x,y⟩.
Function-hiding IND-security for MCIPE. Consider the following experi-
ment between an adversary A and a challenger C.

Experiment MCIPE-Exptb(1λ):

– Setup. A(1λ) outputs a set of corrupted parties K ⊂ [n], as well as
the parameters m and n to the challenger C. The challenger C runs
pp ← Gen(1λ), and (mpk,msk, {eki}i∈[n]) ← Setup(pp,m, n); it gives
mpk and {eki}i∈K to A.

– Query. The adversary can make the following types of queries:
• KGen queries. Whenever the adversary A makes a KGen query

with two vectors y(0) ∈ Zmn
q and y(1) ∈ Zmn

q : C calls sky(b) :=

KGen(mpk,msk,y(b)) and returns sky(b) to A;
• Enc queries. Whenever A makes an Enc query with the tuple

(i, t,x
(0)
i,t ,x

(1)
i,t), the challenger C calls cti,t := Enc(mpk, eki,x

(b)
i,t , t)

and returns cti,t to A;

An adversary A is said to be admissible iff the following hold with probability
1 where H := [n]\K denotes the set of honest clients:

1. for every label t ∈ {0, 1}∗, either for every i ∈ H, A has made at least one
Enc query of the form (i, t,_,_), or A made no Enc query of the form
(i, t,_,_) for any i ∈ H.

2. if A ever makes an Enc query with the tuple (i, t,x
(0)
i,t ,x

(1)
i,t) for some corrupt

i ∈ K, it must be that x
(0)
i,t = x

(1)
i,t ;

19

3. for any pair (y(0),y(1)) submitted in a KGen query where for b ∈ {0, 1},
y(b) := (y

(b)
1 , . . ., y(b)

n) ∈ {0, 1}mn, it must be that
(a) for i ∈ K, y(0)

i = y
(1)
i .

(b) for any collection {x(0)
i,t ,x

(1)
i,t }i∈H pertaining to the same t where each pair

(x
(0)
i,t ,x

(1)
i,t) for i ∈ H has been submitted in an Enc query of the form

(i, t,x
(0)
i,t ,x

(1)
i,t),〈

(x
(0)
i,t)i∈H, (y

(0)
i)i∈H

〉
=
〈
(x

(1)
i,t)i∈H, (y

(1)
i)i∈H

〉
(6)

Definition 1 (Adaptive, function-hiding IND-security of MCIPE). We
say that an MCIPE scheme is adaptive, function-hiding IND-secure iff for any
non-uniform probabilistic polynomial-time admissible adversary A, its views in
MCIPE-Expt0(1λ) and MCIPE-Expt1(1λ) are computationally indistinguishable.

Definition 2 (Selective, function-hiding IND-security of MCIPE). We
say that an MCIPE scheme is selective, function-hiding IND-secure iff for any
non-uniform probabilistic polynomial-time (PPT) admissible adversary A also
satisfying an additional constraint that A always makes all KGen queries ahead
of any Enc query, its views in MCIPE-Expt0(1λ) and MCIPE-Expt1(1λ) are com-
putationally indistinguishable.

Remark 1 (The all-or-nothing admissibility rule). We also call the first admis-
sibility rule the “all-or-nothing” admissibility rule. Jumping ahead, this rule is
necessary later to show that the hybrids Hℓ,3 and H′

ℓ,3 are identically distributed.
In Appendices C and D.2 of the online full version, we present new techniques
for eventually removing the all-or-nothing admissibility rule, thus strengthening
the security of the scheme.

4 Preliminaries

We review bilinear groups and relevant hardness assumptions in Appendix A of
the online full version.

4.1 Function-Hiding (Single-Input) Inner Product Encryption

We will need a single-input inner-product encryption scheme — henceforth we
call this building block Inner Production Encryption (IPE). IPE can be viewed
as a special case of multi-client inner product encryption when n = 1. However,
we will need our underlying IPE to satisfy a few nice properties, including the
fact that Enc and KGen should still work when taking in the group encoding
of the plaintext or key vector; moreover, we want that the scheme computes
the “inner-product in the exponent”. Formally, the special IPE scheme we need
consists of the following possibly randomized algorithms:

20

– pp← Gen(1λ): takes in a security parameter λ and samples public parame-
ters pp. We will assume that pp contains the description of a bilinear group
(G,GT) of prime order q, a random generator g ∈ G, and the description of
the pairing operator e : G×G→ GT .

– imsk← Setup(pp,m): takes in the public parameters pp and the dimension
m of the plaintext vector, outputs a secret key imsk.

– sky ← KGen(imsk, JyK): takes in the secret key imsk, and a vector of group
elements JyK ∈ Gm which represents the group encoding of the vector y ∈ Zm

q ,
outputs a functional (secret) key sky.

– ct← Enc(imsk, JxK): takes in the secret key imsk, a plaintext vector JxK ∈ Gm

represented in group encoding, and outputs a ciphertext ct.
– JvKT ← Dec(sky, ct): takes in the functional key sky and a ciphertext ct, and

outputs a decrypted outcome JvKT .

Correctness. Correctness requires that for any λ,m ∈ N,x,y ∈ Zm
q , the fol-

lowing holds with probability 1: let pp ← Gen(1λ), imsk ← Setup(pp,m),
sky ← KGen(imsk, JyK), ct ← Enc(imsk, JxK), JvKT ← Dec(sky, ct), then, it
must be that v := ⟨x,y⟩.
Function-hiding security. Consider the following experiment IPE-Exptb(1λ)
between an adversary A and a challenger C:

Experiment IPE-Exptb(1λ):

– Setup. The challenger C runs pp← Gen(1λ), and imsk← Setup(pp,m),
and gives pp to A.

– Query. A makes the following types of queries to C:
• KGen queries: the adversary A submits (y(0),y(1)); the challenger C

computes sky(b) ← KGen(msk, Jy(b)K) and returns to A the resulting
sky(b) .
• Enc queries: the adversary A submits (x(0),x(1)); the challenger C

computes ct← Enc(mpk, Jx(b)K), and returns ct to A.

An adversaryA is said to be admissible iff the following holds with probability
1: for any (x(0),x(1)) tuple submitted in an Enc query, for any (y(0),y(1)) tuple
submitted in a KGen query, it must be that ⟨x(0),y(0)⟩ = ⟨x(1),y(1)⟩.

Definition 3 (Adaptive, Function-hiding IND-security of IPE). We say
that the IPE scheme satisfies adaptive, function-hiding IND-security, iff for any
non-uniform probabilistic polynomial-time (PPT) admissible adversary, its views
in IPE-Expt0 and IPE-Expt1 are computationally indistinguishable.

Definition 4 (Selective, Function-hiding IND-security of IPE). We say
that the IPE scheme satisfies selective, function-hiding IND-security, iff for any
non-uniform PPT admissible adversary also satisfying an additional constraint
that all KGen queries must be made before any Enc query, its views in IPE-Expt0

and IPE-Expt1 are computationally indistinguishable.

21

Prior works [Wee16, ACF+18, SW21] showed how to construct a function-
hiding IPE scheme from the Decisional Linear assumption in bilinear groups.
The idea is to first construct an IPE scheme without function privacy from De-
cisional Linear [Wee16,ACF+18, SW21] and then apply a function privacy up-
grade [Lin17,Wee16,ACF+18,SW21]. The resulting constructions indeed satisfy
the aforementioned nice properties that we need.

4.2 Correlated Pseudorandom Function

A correlated pseudorandom function family consists of the following randomized
algorithms:

– (K1, . . . ,Kn)← Gen(1λ, n, q): takes a security parameter 1λ and the number
of users n, some prime q, and outputs the user secret key Ki for each i ∈ [n].

– v ← Eval(Ki, x): given a user secret key Ki and an input x ∈ {0, 1}λ, output
an evaluation result v ∈ Zq.

Correctness. For correctness, we require that for any λ ∈ N, any (K1, . . . ,Kn)
in the support of Gen(1λ), any input x ∈ {0, 1}λ, the following holds:∑

i∈[n]

CPRF.Eval(Ki, x) = 0 mod q

Correlated pseudorandomness. We require that for any non-uniform PPT
adversary A who is allowed corrupt f ≤ n− 2 users and obtain their user secret
keys, for any subset U of at most n − f − 1 honest users, for any input x, the
evaluations {CPRF.Eval(Ki, x)}i∈U are computationally indistinguishable from
random values, as long as the adversary has not made a query on the input x.

More formally, correlated pseudorandomness is defined as below. Consider a
game denoted CPRF-Exptb (1λ, n, q) betweenA and a challenger C, parameterized
by a bit b ∈ {0, 1}.

– Setup. A submits a set of corrupt nodes K ⊂ [n] of size at most n −
2. Henceforth, let H := [n]\K. Now, C runs the honest (K1, . . . ,Kn) :=
CPRF.Gen(1λ, n, q) algorithm, and gives {Ki}i∈K to A.

– Queries. A can adaptively make queries: for each query, A submits an input
x. If b = 0, the challenger C chooses random {vi}i∈H

$←Z|H|
q subject to the

condition that
∑

i∈H vi+
∑

j∈K CPRF.Eval (Kj , x) = 0, and returns {vi}i∈H
to A. Else if b = 1, the challenger gives {CPRF.Eval(Ki, x)}i∈H to A.

We say that CPRF satisfies correlated pseudorandomness, iff for any n and q,
any non-uniform PPT adversaryA’s views in CPRF-Expt0(1λ, n, q) and CPRF-Expt1

(1λ, n, q) are computationally indistinguishable.

Construction. Several prior works [BIK+17,ABG19] showed how to construct
a correlated pseudorandom function from a standard pseudorandom function
(PRF). Without loss of generality, we may assume that PRF’s output range is

22

[0, q − 1]. During the setup phase denoted by Gen, sample random PRF keys
ki,j for all i < j, and let kj,i = ki,j . Party i’s secret key Ki is defined to be the
set {ki,j}j∈[n],j ̸=i. The evaluation function Eval(Ki, x) is defined as follows:

Eval(Ki, x) =
∑

j∈[n],j ̸=i

(−1)j<i · PRF(ki,j , x) mod q

Prior works [BIK+17,ABG19,SW21] proved that this CPRF satisfies correct-
ness and correlated pseudorandomness, assuming the underlying PRF is secure.

5 Function-Hiding MCIPE

In this section, we give our detailed constructions of function-hiding multi-client
inner-product encryption schemes and their formal proofs. In Section 5.1 we
present the selective function-hiding secure variant and in Appendix B of the
online full version we present the adaptive function-hiding secure variant.

5.1 Selective Function-Hiding MCIPE

Detailed Construction Let IPE := (Gen,Setup,KGen,Enc,Dec) denote a
function-hiding inner-product encryption scheme, and let CPRF := (Gen,Eval)
denote a correlated pseudorandom function.

Selective Function-hiding, multi-client inner-product encryption

– Gen(1λ): let pp← IPE.Gen(1λ), and output pp.

– Setup(pp,m, n):
• let (K1, . . . ,Kn) := CPRF.Gen(1λ, n, q);

• for i ∈ [n]: let imski ← IPE.Setup(pp, 2m+ 3), and ai
$←Zq;

• output mpk := pp, msk := {imski, ai}i∈[n], and {eki := (imski,Ki, ai)}i∈[n].

– KGen(mpk,msk,y):

• sample ρ
$←Zq;

• let ỹi = (yi, 0
m, ρ,−ρai, 0);

• let iski ← IPE.KGen(imski, JỹiK), and output sky := {iski}i∈[n].

– Enc(mpk, eki,xi, t):

• sample µi,t
$←Zq if µi,t has not been sampled before;

• let x̃i = (xi, 0
m,CPRF.Eval(Ki, t) + aiµi,t, µi,t, 0);

• call ct← IPE.Enc(imski, Jx̃iK), and output ct.

– Dec(mpk, sky, {cti,t}i∈[n]): let JvKT :=
∏

i∈[n] IPE.Dec(iski, cti), and out-
put v := log(JvKT).

23

Asymptotic efficiency. We can instantiate the function-hiding IPE using the
scheme described in earlier works [Wee16,ACF+18, SW21], based on the Deci-
sional Linear assumption. For the underlying IPE scheme, the ciphertext con-
tains O(m) group elements where m is the length of the vector being encrypted.
Similarly, each functional key has only O(m) group elements too. The public
parameters contain only the group description.

In our MCIPE construction, to encrypt a length-m vector, each client’s cipher-
text has only O(m) group elements. A functional key for a length (n ·m)-vector
has size O(n ·m) group elements. Each client’s secret key has size O(n) where
the big-O hides terms related to the security parameter. The public parameters
contain only the group description.

Theorem 2. Suppose that the Decisional Linear assumption holds in G, IPE
satisfies selective, function-hiding IND-security (see Definition 4), and moreover,
CPRF satisfies correlated pseudorandomness. Then, the above MCIPE scheme
satisfies selective function-hiding IND-security.

We next present the proof of Theorem 2.

Proof of Theorem 2 We consider a sequence of outer hybrid experiments
summarized as follows:

MCIPE-Expt1 ≈c Hyb0 ≈c . . . ≈c Hybℓ ≈c . . . ≈c HybQkgen
≈c Hyb

∗ ≈c MCIPE-Expt0

Further, in Lemma 1 to prove Hybℓ−1 ≈c Hybℓ, we consider a sequence of inner
hybrid experiments summarized as follows:

Hybℓ−1 ≈c Hℓ−1,1 ≈c Hℓ−1,2 ≈c Hℓ−1,3 ≈c H
′
ℓ−1,3 ≈c H

′
ℓ−1,2 ≈c H

′
ℓ−1,1 ≈c Hybℓ

Looking ahead, the proof falls short of showing adaptive security and only shows
selective security because in the inner hybrids, the challenger embeds the chal-
lenge key y∗(b) for b ∈ {0, 1} inside the ciphertexts and doing this requires the
adversary to make all KGen queries before any Enc query is made.

Experiment MCIPE-Expt1. This is the real-world experiment, parameterized
by b = 1. In this experiment, the challenger C answers Enc and KGen queries
using the following vectors where ρ is freshly chosen for every KGen query:

x̃i =
(
x
(1)
i , 0m,CPRF.Eval(Ki, t) + aiµi,t, µi,t, 0

)
, ỹi =

(
y
(1)
i , 0m, ρ,−ρai, 0

)
Experiment Hyb0. Same as MCIPE-Expt1 except that for any honest i ∈ H,
the challenger C answers Enc queries using

x̃i =
(
x
(1)
i ,x

(0)
i ,CPRF.Eval(Ki, t) + aiµi,t, µi,t, 0

)
Claim 1 If the IPE scheme is function-hiding IND-secure, then, MCIPE-Expt1

and Hyb0 are computationally indistinguishable.

24

Proof. Since this modification preserves the inner products ⟨x̃i, ỹi⟩ for any pair of
encryption and key vectors queried, and for any i ∈ H, Hyb0 is indistinguishable
from MCIPE-Expt1 due to the function-hiding IND-security of the IPE scheme.

Experiment Hybℓ. We next define a sequence of hybrid experiments Hybℓ where
ℓ ∈ [Qkgen] where Qkgen denotes an upper bound the number of KGen queries
made by A. In Hybℓ, for the first ℓ KGen queries, the challenger C uses ỹi =(
0m,y

(0)
i , ρ,−ρai, 0

)
for any honest i ∈ H, and uses ỹi =

(
y
(1)
i , 0m, ρ,−ρai, 0

)
for any corrupt i ∈ K. For the remaining Qkgen − ℓ number of KGen queries, C
uses ỹi =

(
y
(1)
i , 0m, ρ,−ρai, 0

)
for all i ∈ [n].

In Lemma 1, we prove that Hybℓ−1 ≈c Hybℓ for ℓ ∈ [Qkgen].

Experiment Hyb∗. The challenger C answers Enc and KGen queries using the
following vectors for any honest i ∈ H:

x̃i =
(
0m,x

(0)
i ,CPRF.Eval(Ki, t) + aiµi,t, µi,t, 0

)
, ỹi =

(
0m,y

(0)
i , ρ,−ρai, 0

)
For corrupt i ∈ K, the challenger C still uses:

x̃i =
(
x
(1)
i , 0m,CPRF.Eval(Ki, t) + aiµi,t, µi,t, 0

)
, ỹi =

(
y
(1)
i , 0m, ρ,−ρai, 0

)
Claim 2 If the IPE scheme is function-hiding IND-secure, then, HybQkgen

and
Hyb∗ are computationally indistinguishable.

Proof. Observe that HybQkgen
and Hyb∗ are almost identical except that the

first m coordinates in x̃i are replaced with 0m for i ∈ H. Since this modification
preserves the inner products ⟨x̃i, ỹi⟩ for any pair of encryption and key vectors
queried, and for any i ∈ H, Hyb∗ is computationally indistinguishable from
HybQkgen

due to the function-hiding IND-security of the IPE scheme.

Experiment MCIPE-Expt0. This is the real-world experiment, parameterized
by b = 0. In the experiment MCIPE-Expt0, the challenger C answers Enc and
KGen queries using the following vectors:

x̃i =
(
x
(0)
i , 0m,CPRF.Eval(Ki, t) + aiµi,t, µi,t, 0

)
, ỹi =

(
y
(0)
i , 0m, ρ,−ρai, 0

)
where ρ is freshly chosen for every KGen query.

Claim 3 If the IPE scheme is function-hiding IND-secure, then, Hyb∗ and MCIPE
-Expt0 are computationally indistinguishable.

Proof. Observe that Hyb∗ is computationally indistinguishable from MCIPE-Expt0

since for honest i ∈ H, the inner-product ⟨x̃i, ỹi⟩ is preserved for any pair of
encryption and key vectors queried; and for corrupt i ∈ K, recall that our ad-
missibility stipulates that x

(0)
i = x

(1)
i and y

(0)
i = y

(1)
i , and thus it makes no

difference whether x
(0)
i ,y

(0)
i is used or whether x

(1)
i ,y

(1)
i is used by C.

25

Therefore, to complete the proof of Theorem 2, it suffices to prove the fol-
lowing lemma, i.e., the computational indistinguishability of Hybℓ−1 and Hybℓ.

Lemma 1. Suppose that the Decisional Linear assumption holds in G, IPE sat-
isfies selective function-hiding IND-security, and moreover, CPRF satisfies cor-
related pseudorandomness. Then, Hybℓ−1 is computationally indistinguishable
from Hybℓ for any ℓ ∈ [Qkgen].

Proof. We consider a sequence of hybrid experiments.

Experiment Hℓ−1,1. In Hℓ−1,1, for any honest i ∈ H, the challenger C uses the

following vectors to answer Enc and KGen queries where ρ∗
$←Zq, and we use

y∗(0), y∗(1) to denote the key vectors submitted during the ℓ-th KGen query:

x̃i =
(
x
(1)
i ,x

(0)
i ,CPRF.Eval(Ki, t) + aiµi,t, µi,t,CPRF.Eval(Ki, t) · ρ∗ + ⟨x(1)

i ,y
∗(1)
i ⟩

)
,

ỹi =


(
0m,y

(0)
i , ρ,−ρai, 0

)
first ℓ− 1 KGen queries

(0m, 0m, 0, 0, 1) ℓ-th KGen query(
y
(1)
i , 0m, ρ,−ρai, 0

)
remaining Qkgen − ℓ KGen queries

Above, ρ is freshly chosen for every KGen query, and ρ∗ corresponds to the
randomness chosen for the challenge KGen query, i.e., the ℓ-th KGen query.

Observe that Hℓ−1,1 is almost identical to Hybℓ−1 except for the above modifi-
cations highlighted in blue. Since these modification preserves the inner products
⟨x̃i, ỹi⟩ for any pair of encryption and key vectors queried, and for any i ∈ H,
Hℓ−1,1 and Hybℓ−1 are computationally indistinguishable due to the function-
hiding IND-security of the IPE scheme.

Observe that in this hybrid, the challenger needs to know challenge key y∗(1)

when answering Enc queries and hence A must make all KGen queries ahead of
any Enc query. This is why our proof technique works only for selective security.

Experiment Hℓ−1,2. Almost identical to Hℓ−1,1, except that for each t label
that appears first in an Enc query, the challenger C chooses {Ri,t}i∈H at random
from Zq subject to

∑
i∈H Ri,t = −

∑
i∈K CPRF.Eval(Ki, t). For honest i ∈ H,

the challenger C uses the following vector to answer Enc queries:

x̃i =
(
x
(1)
i ,x

(0)
i , Ri,t + aiµi,t, µi,t, Ri,t · ρ∗ + ⟨x(1)

i ,y
∗(1)
i ⟩

)
Experiment Hℓ−1,2 is computationally indistinguishable from Hℓ−1,1 due to the
correlated pseudorandomness of CPRF.

Experiment Hℓ−1,3. Almost identical to Hℓ−1,2, except that the challenger
C chooses random {Ti,t}i∈H subject to

∑
i∈H Ti,t = −ρ∗ ·

∑
i∈K CPRF(Ki, t),

and uses the following vector in any Enc query for an honest i ∈ H:

x̃i =
(
x
(1)
i ,x

(0)
i , Ri,t + aiµi,t, µi,t, Ti,t + ⟨x(1)

i ,y
∗(1)
i ⟩

)
26

Claim 4 Suppose that the Decisional Linear assumption holds in G. Then,
Hℓ−1,3 is computationally indistinguishable from Hℓ−1,2.

Proof. We will consider a sequence of hybrid experiments over the set of hon-
est clients. Henceforth let d be the number of honest clients, and let H :=
{i1, i2, . . . , id} ⊆ [n] denote the set of honest clients. We define the hybrid Gj as
follows where j ∈ [d− 1] ∪ {0}:

– If i is among the first j honest clients, then C chooses T̃i,t at random;
– If i is not among the first j honest clients and i ̸= id, then, the challenger
C chooses T̃i,t = Ri,t · ρ∗;

– For the last honest client i = id, the challenger C chooses T̃i,t such that∑
i∈H

T̃i,t = −ρ∗
∑
i∈K

CPRF.Eval(Ki, t)

C uses the following vector when answering Enc queries for any honest i ∈ H:

x̃i =
(
x
(1)
i ,x

(0)
i , Ri,t + aiµi,t, µi,t, T̃i,t + ⟨x(1)

i ,y
∗(1)
i ⟩

)
(7)

Observe that G0 is the same as Hℓ−1,2, and Gd−1 is the same as Hℓ−1,3.
Therefore, to prove Claim 4, it suffices to prove that any two adjacent hybrids Gj

and Gj+1 are computationally indistinguishable for j ∈ {0, 1, . . . , d− 2}. Below,
we prove that if the Decisional Linear assumption holds in G, then indeed Gj

and Gj+1 are computationally indistinguishable for j ∈ {0, 1, . . . , d− 2}.
Suppose there is an efficient adversary A that can distinguish Gj and Gj+1

with non-negligible probability, we show how to construct an efficient reduction
B that can break the Decisional Linear assumption. Let Qenc denote the maxi-
mum number of labels t submitted during Enc queries. B obtains an instance
(J1K, JβK, JγK, JuK, JβvK, JzK) from a Vector Decisional Linear challenger (see Ap-
pendix A.1 of the online full version), where u,v, z ∈ ZQenc

q and β, γ ∈ Zq. B’s
task is to distinguish whether JzK = Jγ(u+ v)K or random. B will now interact
with A and embed this Decisional Linear instance in its answers.

Let i∗ = ij+1 ∈ H be the index of the (j + 1)-th honest client.

– Setup. B chooses ξ ∈ Zq at random, and implicitly sets ai∗ = β−1 and
aid = ξ · β−1, without actually computing them. B chooses all other terms in
the Setup algorithm honestly, and gives mpk and {eki}i∈K to A.

– KGen queries.
1. For the first ℓ− 1 KGen queries:
• for any honest i ∈ H, i ̸= i∗ and i ̸= id, B knows all the terms necessary

to compute iski.
• for i = i∗, the reduction B does not know ai∗ , but it can replace the

terms Jρ,−ρai∗K with Jβρ′,−ρ′K instead where ρ′
$←Zq. It can compute

JβρK because it knows JβK and ρ′. B can now continue computing
iski∗ ← IPE.KGen(imski, J0m,y

(0)
i , βρ′,−ρ′, 0K) normally.

27

• for i = id, B can compute iskid in a similar fashion as above, even if it
does not know aid = ξ · β−1.
• for any corrupt i ∈ K, B computes iski using the original honest algo-

rithm, since it knows all the necessary terms.
2. For any KGen query after the first ℓ queries, the reduction B can compute

functional key just like for the first ℓ− 1 queries.
3. For the ℓ-th KGen query, B wants to embed the γ term from the De-

cisional Linear challenge into the ρ term for this specific functional key.
Recall that B knows only JγK but not γ itself.
• For any corrupt i ∈ K, observe that B can compute their respective

key component iski knowing only JγK but not γ itself.
• For any honest i ∈ H, B computes iski ← IPE.KGen(imski, J0m, 0m, 0, 0, 1K).

– Enc queries. The adversary A submits (i, t,x
(0)
i,t ,x

(1)
i,t). If i ∈ K, B can

compute the ciphertext normally since it knows all the necessary terms. Below
we focus on the case when i ∈ H. The first time the label t appears in an
Enc query for some honest i ∈ H, the reduction B picks {T̃i,t}i∈H as follows,
where ut, vt, and zt denote the t-th component of the vector u, v, and z from
the Decisional Linear challenge3.
(a) If i ∈ H, i ̸= i∗, and i ̸= id: B chooses T̃i,t at random if i is among the

first j honest clients, else it implicitly lets T̃i,t := Ri,t · γ.
(b) If i = i∗: B implicitly chooses

Ri∗,t + ai∗µi∗,t = ut, µi∗,t = −βvt, T̃i∗,t = zt

(c) If i = id: B samples ϕ
$←Zq, and implicitly chooses

µid,t = −µi∗,t·ξ−1+a−1
i∗ ·ϕ, Rid,t = −

 ∑
i∈H,i̸=id

Ri,t +
∑
i∈K

CPRF.Eval(Ki, t)

 ,

T̃id,t = −

∑
i∈K

CPRF.Eval(Ki, t) +
∑

i∈H,i̸=i∗,i̸=id

T̃i + zt


For case (a), computing the ciphertext (see Equation 7) is straightforward.
For case (b), it is also easy to see that given B’s knowledge of JutK, JβvtK,
and JztK, one can compute the ciphertext in a straightforward way. For case
(c), observe the following. Let

ν = −

 ∑
i∈H,i̸=id,i̸=i∗

Ri,t +
∑
i∈K

CPRF.Eval(Ki, t)

 ;

3 For convenience, we may imagine that the labels t have been renamed to be the
integers {1, 2, . . . , Qenc}.

28

and thus Rid,t = ν −Ri∗,t.

JRid,t + aidµid,tK = Jν −Ri∗,t + ξai∗ · (−µi∗,t · ξ−1 + a−1
i∗ · ϕ)K

= Jν −Ri∗,t − ai∗µi∗,t + ξ · ϕK
= Jν − ut + ξ · ϕK

Further, Jµid,tK = Jβvt · ξ−1 + β · ϕK. Therefore, both JRid,t + aidµid,tK and
Jµid,tK can be computed knowing ν, JutK, ξ, ϕ, JβvtK, and JβK.

Observe that Ri∗,t ·γ = (ut−ai∗µi∗,t)γ = (ut+β−1 ·βvt)γ = (ut+vt)γ. Therefore,
in the Decisional Linear challenge (J1K, JβK, JγK, JuK, JβvK, JzK) obtained by B, if
z = γ(u+ v), then A’s view is identically distributed as in Gj . Else A’s view is
identically distributed as in Gj+1.

We now continue with the proof of Lemma 1.

Experiment H′
ℓ−1,3. Almost identical to Hℓ−1,3, except that the challenger C

uses the following vector in any Enc query for an honest i ∈ H:

x̃i =
(
x
(1)
i ,x

(0)
i , Ri,t + aiµi,t, µi,t, Ti,t + ⟨x(0)

i ,y
∗(0)
i ⟩

)
where the terms {Ti,t}i∈H are chosen at random subject to

∑
i∈H Ti,t = −ρ∗ ·∑

i∈K CPRF(Ki, t).
As long as A respects the admissibility rule defined in Section 3, Hℓ−1,3 and

H′
ℓ−1,3 are identically distributed.

Experiment H′
ℓ−1,2. Almost identical to Hℓ−1,2, except that the challenger C

chooses uses the following vector to answer Enc queries:

x̃i =
(
x
(1)
i ,x

(0)
i , Ri,t + aiµi,t, µi,t, Ri,t · ρ∗ + ⟨x(0)

i ,y
∗(0)
i ⟩

)
Experiment H′

ℓ−1,1. Almost identical to Hℓ−1,1, except that the challenger C
chooses uses the following vector to answer Enc queries:

x̃i =
(
x
(1)
i ,x

(0)
i ,CPRF.Eval(Ki, t) + aiµi,t, µi,t,CPRF.Eval(Ki, t) · ρ∗ + ⟨x(0)

i ,y
∗(0)
i ⟩

)
Using a symmetric argument as before, we can prove the computational in-

distinguishability between H′
ℓ−1,3 and H′

ℓ−1,2, and between H′
ℓ−1,2 and H′

ℓ−1,1.
Finally, H′

ℓ−1,1 and Hybℓ are computationally indistinguishable due to the
function-hiding IND-security of the IPE scheme, since the inner-product ⟨x̃i, ỹi⟩
is preserved for any pair of encryption and key vectors queried and for i ∈ H.
This concludes the proof of Lemma 1.

Acknowledgements. This work is in part supported by a DARPA SIEVE
grant, a Packard Fellowship, NSF awards under the grant numbers 2128519 and
2044679, and a grant from ONR.

29

References

ABDP15. Michel Abdalla, Florian Bourse, Angelo De Caro, and David Pointcheval.
Simple functional encryption schemes for inner products. In PKC, 2015.

ABG19. Michel Abdalla, Fabrice Benhamouda, and Romain Gay. From single-input
to multi-client inner-product functional encryption. In Asiacrypt, 2019.

ABKW19. Michel Abdalla, Fabrice Benhamouda, Markulf Kohlweiss, and Hendrik
Waldner. Decentralizing inner-product functional encryption. In PKC,
volume 11443, pages 128–157, 2019.

ABM+20. Michel Abdalla, Florian Bourse, Hugo Marival, David Pointcheval, Azam
Soleimanian, and Hendrik Waldner. Multi-client inner-product functional
encryption in the random-oracle model. In SCN, 2020.

ACF+18. Michel Abdalla, Dario Catalano, Dario Fiore, Romain Gay, and Bogdan
Ursu. Multi-input functional encryption for inner products: Function-
hiding realizations and constructions without pairings. In CRYPTO, 2018.

ACF+20. Shweta Agrawal, Michael Clear, Ophir Frieder, Sanjam Garg, Adam
O’Neill, and Justin Thaler. Ad hoc multi-input functional encryption.
In ITCS, 2020.

AGRW17. Michel Abdalla, Romain Gay, Mariana Raykova, and Hoeteck Wee. Multi-
input inner-product functional encryption from pairings. In EURO-
CRYPT, 2017.

AGT21a. Shweta Agrawal, Rishab Goyal, and Junichi Tomida. Multi-input quadratic
functional encryption from pairings. In CRYPTO, 2021.

AGT21b. Shweta Agrawal, Rishab Goyal, and Junichi Tomida. Multi-party func-
tional encryption. In TCC, 2021.

AJS15. Prabhanjan Ananth, Abhishek Jain, and Amit Sahai. Indistinguishability
obfuscation from functional encryption for simple functions. Cryptology
ePrint Archive, 2015.

APS21. Michel Abdalla, David Pointcheval, and Azam Soleimanian. 2-step multi-
client quadratic functional encryption from decentralized function-hiding
inner-product. Cryptology ePrint Archive, 2021.

BIK+17. Keith Bonawitz, Vladimir Ivanov, Ben Kreuter, Antonio Marcedone,
H. Brendan McMahan, Sarvar Patel, Daniel Ramage, Aaron Segal, and
Karn Seth. Practical secure aggregation for privacy-preserving machine
learning. In CCS, 2017.

BR09. Mihir Bellare and Thomas Ristenpart. Simulation without the artificial
abort: Simplified proof and improved concrete security for waters’ ibe
scheme. In Eurocrypt, 2009.

BV18. Nir Bitansky and Vinod Vaikuntanathan. Indistinguishability obfuscation
from functional encryption. J. ACM, 65(6), nov 2018.

CDG+18a. Jeremy Chotard, Edouard Dufour Sans, Romain Gay, Duong Hieu Phan,
and David Pointcheval. Decentralized multi-client functional encryption
for inner product. In ASIACRYPT, 2018.

CDG+18b. Jérémy Chotard, Edouard Dufour Sans, Romain Gay, Duong Hieu Phan,
and David Pointcheval. Multi-client functional encryption with repetition
for inner product. Cryptol. ePrint, 2018.

CDG+20. Jérémy Chotard, Edouard Dufour Sans, Romain Gay, Duong Hieu Phan,
and David Pointcheval. Dynamic decentralized functional encryption. In
CRYPTO, 2020.

30

EHK+13. Alex Escala, Gottfried Herold, Eike Kiltz, Carla Rafols, and Jorge Luis Vil-
lar. An algebraic framework for diffie-hellman assumptions. In CRYPTO,
2013.

GGG+14. Shafi Goldwasser, S. Dov Gordon, Vipul Goyal, Abhishek Jain, Jonathan
Katz, Feng-Hao Liu, Amit Sahai, Elaine Shi, and Hong-Sheng Zhou. Multi-
input functional encryption. In Eurocrypt, 2014.

Jag15. Tibor Jager. Verifiable random functions from weaker assumptions. In
TCC, 2015.

KNT18. Fuyuki Kitagawa, Ryo Nishimaki, and Keisuke Tanaka. Obfustopia built
on secret-key functional encryption. In EUROCRYPT, 2018.

Lin17. Huijia Lin. Indistinguishability obfuscation from SXDH on 5-linear maps
and locality-5 prgs. In CRYPTO, 2017.

LT19. Benoit Libert and Radu Titiu. Multi-client functional encryption for linear
functions in the standard model from LWE. In ASIACRYPT, 2019.

MR17. Brendan McMahan and Daniel Ramage. Federated learning: Collaborative
machine learning without centralized training data, 2017.

NPP23. Ky Nguyen, Duong Hieu Phan, and David Pointcheval. Multi-client func-
tional encryption with fine-grained access control. In ASIACRYPT, 2023.

SCR+11. Elaine Shi, T-H. Hubert Chan, Eleanor Rieffel, Richard Chow, and Dawn
Song. Privacy-preserving aggregation of time-series data. In NDSS, 2011.

SW21. Elaine Shi and Ke Wu. Non-interactive anonymous router. In Eurocrypt,
2021.

Tom20. Junichi Tomida. Tightly secure inner product functional encryption: Multi-
input and function-hiding constructions. Theoretical Computer Science,
833:56–86, 2020.

Ü20. Akın Ünal. Impossibility results for lattice-based functional encryption
schemes. In Eurocrypt, page 169–199, 2020.

Wat05. Brent Waters. Efficient identity-based encryption without random oracles.
In Eurocrypt, 2005.

Wee16. Hoeteck Wee. New techniques for attribute-hiding in prime-order bilinear
groups. Manuscript, 2016.

Appendices

A Preliminaries: Bilinear Groups and Assumptions

Throughout, we use λ to denote the security parameter. Boldface letters such as
x denote vectors, and normal-font letters such as x to denote scalars. Given two
vectors x ∈ Zℓ

q and y ∈ Zℓ
q each of dimension ℓ, we use ⟨x,y⟩ ∈ Zq to denote

their inner-product modulo q.

Notation for group elements. Given a cyclic group G of prime order q, and
a generator g ∈ G, we use JxK to denote gx ∈ G where x ∈ Zq. Given a vector
x := (x1, x2, . . . , xℓ) ∈ Zℓ

q, the notation JxK denotes the vector of group elements
(gx1 , gx2 , . . . , gxℓ).

Notation for pairing groups. Let PGGen be a probabilistic polynomial time
algorithm that takes input a security parameter 1λ and outputs a pairing group
description (G,GT , e, q, g, gT) where G and GT are groups of prime order q and

31

e : G×G→ GT defines a pairing operation. Further, g is a random generator in
G and gT := e(g, g). In this case, the notation JxK means gx, and the notation
JxKT means e(g, g)x. For a vector x = (x1, . . . , xn), JxK means (gx1 , . . . , gxn),
and the notation JxKT means (e(g, g)x1 , . . . , e(g, g)xn). For two vectors x and y
of same dimension, define e(x,y) := JxyKT .

Implicit notation for group operations. If a party knows JxK ∈ G and
y ∈ Zq, it is able to efficiently compute JxyK := JxKy. Therefore, without risk
of ambiguity, often when we write “compute JxyK” in an algorithm description,
we mean compute the group exponentiation JxKy or JyKx. The same rule also
extends to vectors as well as bilinear groups.

A.1 The Decisional Linear Assumption

The Decisional Linear assumption. We say that the Decisional Linear as-
sumption holds for the group generator G, iff the following two experiments are
computationally indistinguishable:

1. Sample pp := (q,G, g)
$←G(1κ) where G is a cyclic group of order q with a

random generator g = J1K. Sample random β, γ, u, v
$←Zq. Output the tuple

(pp, J1K, JβK, JγK, JuK, JβvK, Jγ(u+ v)K).

2. Sample pp := (q,G, g)
$←G(1κ) where G is a cyclic group of order q with a

random generator g = J1K. Sample random β, γ, u, v, z
$←Zq. Output the tuple

(pp, J1K, JβK, JγK, JuK, JβvK, JzK).

Without risk of ambiguity, we often say that the Decisional Linear assumption
holds for the group G where G is the group sampled by the group generator G.
The Vector Decisional Linear assumption. For convenience, the opera-
tional version of the Decisional Linear assumption we use is in fact a vectorized
version, which is implied by the aforementioned standard Decisional Linear as-
sumption through a standard hybrid argument. The Vector Decisional Linear
assumption [SW21] posits that the following two distributions are computation-
ally indistinguishable:

1. Sample pp := (q,G, g)
$←G(1κ) where G is a cyclic group of order q with a

random generator g = J1K. Sample random β, γ
$←Zq, and random u,v

$←Zn
q .

Output the tuple (pp, J1K, JβK, JγK, JuK, JβvK, Jγ(u+ v)K).

2. Sample pp := (q,G, g)
$←G(1κ) where G is a cyclic group of order q with a

random generator g = J1K. Sample random β, γ
$←Zq, and random u,v, z

$←Zn
q .

Output the tuple (pp, J1K, JβK, JγK, JuK, JβvK, JzK).

Fact 1 ([SW21]) Assume that the Decisional Linear assumption holds in G,
then the above Vector Decisional Linear assumption holds in G as well.

32

A.2 The Matrix Decisional Diffie Hellman Assumption

The k-MDDH assumption. We say that the k-MDDH assumption holds for
the group generator G, iff the following two experiments are computationally
indistinguishable:

1. Sample pp := (q,G, g)
$←G(1κ) where G is a cyclic group of order q with a

random generator g = J1K. Sample a matrix A ← Z(k+1)×k
q of full rank k,

and random vector w
$←Zk

q . Output the tuple (pp, JAK, JAwK).

2. Sample pp := (q,G, g)
$←G(1κ) where G is a cyclic group of order q with a

random generator g = J1K. Sample a matrix A ← Z(k+1)×k
q of full rank k,

and random vector u
$←Zk+1

q . Output the tuple (pp, JAK, JuK).

Fact 2 ([EHK+13]) The Decisional Linear assumption implies the k-MDDH
assumption for k ≥ 2.

B Achieving Adaptive Security

In this section we show that the construction from Section 5.1 can be proven
to be adaptive function-hiding secure. For the security proof, we will need to
unwrap the layer of function-hiding secure IPE, that is, use it in a non-black-box
manner.

Lin [Lin17] introduced a two-layered technique and applied it on the IPE
scheme by Abdalla et al. [ABDP15] to obtain a function-hiding secure IPE. As
the IPE scheme in [ABDP15] was selective IND secure in the first place, hence
the resulting function-hiding scheme was also selectively secure. However, this is
not sufficient for our case as we need adaptive function-hiding security. So, we
apply the two layered technique of Lin [Lin17] to the adaptive IND-secure IPE
scheme by Abdalla et al. [ACF+18] in order to obtain adaptive function-hiding
IPE scheme.

B.1 Preliminary: Adaptively Secure Inner-Product Encryption

The following IPE scheme by Abdalla et al. [ACF+18], and was shown to satisfy
adaptive, function-revealing indistinguishability-based security.

Adaptive IND-secure, inner-product encryption

– Gen(1λ):
• output pp := (G,GT , e, q, g, gT)← PGGen(1λ)

– Setup(pp,m):

• sample matrix A← Z(k+1)×k
q of full rank k, U $←Zm×(k+1)

q ;
• output impk:= (JAK, JUAK), imsk:= U.

– KGen(pp, imsk, JyK):

33

• let JdK = J
(
I,U

)T
yK and output isky := JdK.

– Enc(pp, impk, JxK):

• sample s
$←Zk

q and let JcK = J
(
(x+UAs)T , (−As)T

)T K;
• output ctx = JcK.

– Dec(pp, sky, ctx):

• let JvKT := e
(
JcKT , JdK

)
;

• output v := log(JvKT).

B.2 Preliminary: Adaptive Function-Hiding Inner Product
Encryption

We now present a variant of the function-hiding inner product encryption from
Lin [Lin17] generalized to the k-MDDH setting that is adaptively secure. Alter-
nately, one can also look at it as applying the two layered technique of Lin [Lin17]
to the adaptive IND-secure IPE scheme by Abdalla et al. [ACF+18] presented in
Section B.1.

Adaptive Function-hiding, inner-product encryption

– Gen(1λ):
• output pp := (G,GT , e, q, g, gT)← PGGen(1λ).

– Setup(pp,m):

• sample A,B← Z(k+1)×k
q of full rank k, U $←Zm×(k+1)

q ,

V
$←Z(m+k+1)×(k+1)

q ;
• output imsk:= (A,B,U,V).

– KGen(pp, imsk, Jy ∈ Zm
q K):

• sample t
$←Zk

q and let JdK = J
(
I,U

)T
y +VBtK, Jd′K = J−BtK;

• output isky := (JdK, Jd′K).

– Enc(pp, imsk, Jx ∈ Zm
q K):

• sample s $←Zk
q and let JcK = J

(
(x+UAs)T , (−As)T

)T K, Jc′K = JVT cK;
• output ctx = (JcK, Jc′K).

– Dec(pp, sky, ctx):

• let JvKT := e

((
JcK
Jc′K

)T

,

(
JdK
Jd′K

))
;

• output v := log(JvKT).

Theorem 3. Suppose that the k-MDDH assumption holds in G, then, the above
IPE scheme satisfies adaptive weak-function-hiding IND-security.

34

Proof. It is straightforward to observe that our construction is obtained by ap-
plying the standard two-layer technique of Lin [Lin17] to the function revealing
IPE scheme in Appendix B.1. Specifically, we wrap the result of IPE.KGen in
another layer of IPE.Enc, and we wrap the outcome of IPE.Enc in another layer
of IPE.KGen. The adaptive weak-function-hiding security of the resulting con-
struction can be proven in exactly the same manner as earlier work [Lin17]. In
particular, the standard proof preserves the adaptive security of the underlying
IPE, that is, as long as the underlying function-revealing IPE satisfies adaptive
security, the resulting weak-function-hiding IPE satisfies adaptive security too.

B.3 Our Adaptively Secure MCIPE Scheme

The idea is to instantiate our MCIPE scheme using the adaptive weak-function-
hiding IPE scheme of Appendix B.2. In our proof later, we will need to rely on
properties of the specific underlying IPE in a non-blackbox way. In fact, we can
even make an additional simplification in comparison with the selective variant in
that we do not need the last slot of x̃i and ỹi anymore. For the sake of complete-
ness, the construction is as follows — we shall first describe the construction
using the underlying IPE as a blackbox, we then unwrap the entire construc-
tion which is needed for our proof. Let IPE := (Gen,Setup,KGen,Enc,Dec)
denote a adaptive function-hiding inner-product encryption scheme, and let
CPRF := (Gen,Eval) denote a correlated pseudorandom function.

Adaptive function-hiding MCIPE

– Gen(1λ): let pp← IPE.Gen(1λ), and output pp.

– Setup(pp,m, n):
• let (K1, . . . ,Kn) := CPRF.Gen(1λ, n, q);

• for i ∈ [n]: let imski ← IPE.Setup(pp, 2m+ 2), and ai
$←Zq;

• output mpk := pp, msk := {imski, ai}i∈[n], {eki := (imski,Ki, ai)}i∈[n].

– KGen(mpk,msk,y = (y1, . . . ,yn)):

• sample ρ
$←Zq;

• For all i ∈ [n], let ỹi = (yi, 0
m, ρ,−ρai) and let iski ← IPE.KGen(imski,

JỹiK);
• output sky := {iski}i∈[n].

– Enc(mpk, eki,xi, t):

• sample µi,t
$←Zq if µi,t has not been sampled before;

• let x̃i = (xi, 0
m,CPRF.Eval(Ki, t) + aiµi,t, µi,t) and compute cti,t ←

IPE.Enc(imski, Jx̃iK);
• output cti,t.

– Dec(mpk, sky, {cti,t}i∈[n]):

35

• let JvKT :=
∏

i∈[n] IPE.Dec(iski, cti,t);

• output v := log(JvKT).

Unwrapping the construction. Instantiating the above MCIPE construction
with IPE construction from Appendix B.2, we obtain the following detailed con-
struction of MCIPE. We can use any k = 2 in our construction to base its security
on the Decisional Linear assumption, since the Decisional Linear assumption im-
plies the k-MDDH assumption for any k ≥ 2.

Adaptive function-hiding MCIPE: fully unwrapped

– Gen(1λ):
• output pp := (G,GT , e, q, g, gT)← PGGen(1λ).

– Setup(pp,m, n):
• let (K1, . . . ,Kn) := CPRF.Gen(1λ, n, q);

• for i ∈ [n]: let Ai,Bi
$←Z(k+1)×k

q of full rank k, Ui
$←Z(2m+2)×(k+1)

q ,
Vi

$←Z(2m+k+3)×(k+1)
q , ai

$←Zq ;
• output mpk := pp,msk := {Ai,Bi,Ui,Vi, ai}i∈[n], {eki := (Ai, Bi,
Ui, Vi,Ki, ai)}i∈[n].

– KGen(mpk,msk,y = (y1, . . . ,yn)):

• sample ρ
$←Zq, ti

$←Zk
q ;

• let ỹi = (yi, 0
m, ρ,−ρai);

• let JdiK = J
(
I,Ui

)T
ỹi +ViBitiK; Jd′

iK = J−BitiK;
• output sky := {JdiK, Jd′

iK}i∈[n].

– Enc(mpk, eki,xi, t):

• sample µi,t
$←Zq if µi,t has not been sampled before;

• let x̃i = (xi, 0
m,CPRF.Eval(Ki, t) + aiµi,t, µi,t);

• sample si
$←Zk

q ;

• let JciK = J
(
(x̃i +UiAisi)

T , (−Aisi)
T
)T K; Jc′iK = JVT

i ciK;
• output cti,t = (JciK, Jc′iK).

– Dec(mpk, sky, {cti,t}i∈[n]):

• let JviKT := e

((
JciK
Jc′iK

)T

,

(
JdiK
Jd′

iK

))
• let JvKT :=

∏
i∈[n] JviKT , and output v := log(JvKT).

Theorem 4. Suppose that the Decisional Linear assumption holds in G (which
also implies that the k-MDDH assumption holds for k ≥ 2), and CPRF satisfies
correlated pseudorandomness. Then, the above MCIPE scheme satisfies adaptive
function-hiding IND-security.

36

The proof is presented next in Appendix B.4.

B.4 Proof of Theorem 4

We consider a sequence of hybrid experiments.

Experiment MCIPE-Expt1. This is the real-world experiment, parameterized
by b = 1. In the experiment MCIPE-Expt1, the challenger C answers Enc and
KGen queries using the following vectors:

x̃i =
(
x
(1)
i , 0m,CPRF.Eval(Ki, t) + aiµi,t, µi,t

)
, ỹi =

(
y
(1)
i , 0m, ρ,−ρai

)
where ρ is freshly chosen for every KGen query.

Experiment Hyb0. Same as MCIPE-Expt1 except that for any honest i ∈ H,
the challenger C answers Enc queries using

x̃i =
(
x
(1)
i ,x

(0)
i ,CPRF.Eval(Ki, t) + aiµi,t, µi,t

)
Claim 5 If the IPE scheme is adaptive weak-function-hiding IND-secure, then,
MCIPE-Expt1 and Hyb0 are computationally indistinguishable.

Proof. Similar to the proof of Claim 1. Note that the underlying IPE is only weak-
function-hiding secure and it is still sufficient as the two hybrid experiments only
involve change of x̃i.

Experiment Hybℓ. We next define a sequence of hybrid experiments Hybℓ where
ℓ ∈ [Qkgen] where Qkgen denotes an upper bound the number of KGen queries
made by A. In Hybℓ, for the first ℓ KGen queries, the challenger C uses ỹi =(
0m,y

(0)
i , ρ,−ρai

)
for any honest i ∈ H, and uses ỹi =

(
y
(1)
i , 0m, ρ,−ρai

)
for

any corrupt i ∈ K. For the remaining Qkgen− ℓ number of KGen queries, C uses
ỹi =

(
y
(1)
i , 0m, ρ,−ρai

)
for all i ∈ [n].

In Lemma 2, we prove that Hybℓ−1 is computationally indistinguishable from
Hybℓ for ℓ ∈ [Qkgen].

Experiment Hyb∗. The challenger C answers Enc and KGen queries using the
following vectors for any honest i ∈ H:

x̃i =
(
0m,x

(0)
i ,CPRF.Eval(Ki, t) + aiµi,t, µi,t

)
, ỹi =

(
0m,y

(0)
i , ρ,−ρai

)
For corrupt i ∈ K, the challenger C still uses:

x̃i =
(
x
(1)
i , 0m,CPRF.Eval(Ki, t) + aiµi,t, µi,t

)
, ỹi =

(
y
(1)
i , 0m, ρ,−ρai

)
Claim 6 If the IPE scheme is adaptive weak-function-hiding IND-secure, then,
HybQkgen

and Hyb∗ are computationally indistinguishable.

37

Proof. Similar to the proof of Claim 2. Note that the underlying IPE is only weak-
function-hiding secure and it is still sufficient as the two hybrid experiments only
involve change of x̃i.

Experiment MCIPE-Expt0. This is the real-world experiment, parameterized
by b = 0. In the experiment MCIPE-Expt0, the challenger C answers Enc and
KGen queries using the following vectors:

x̃i =
(
x
(0)
i , 0m,CPRF.Eval(Ki, t) + aiµi,t, µi,t

)
, ỹi =

(
y
(0)
i , 0m, ρ,−ρai

)
where ρ is freshly chosen for every KGen query.

Claim 7 If the IPE scheme is function-hiding IND-secure, then, Hyb∗ and MCIPE-Expt0

are computationally indistinguishable.

Proof. Similar to the proof of Claim 3. Note that unlike before, this transition
involves change of both x̃i and ỹi. It can be shown that even for this transition
only weak-function-hiding security of IPE suffices by considering two intermedi-
ate hybrids Hyb• and Hyb⋄ as follows.

Hyb• : x̃i =
(
x
(0)
i ,x

(0)
i ,CPRF.Eval(Ki, t) + aiµi,t, µi,t

)
, ỹi =

(
0m,y

(0)
i , ρ,−ρai

)
Hyb⋄ : x̃i =

(
x
(0)
i ,x

(0)
i ,CPRF.Eval(Ki, t) + aiµi,t, µi,t

)
, ỹi =

(
y
(0)
i , 0m, ρ,−ρai

)
Observe that in the resulting transition sequence Hyb∗ → Hyb• → Hyb⋄ →
MCIPE-Expt0, each step only involves making changes to the way challenger
responds to either encryption query or keygen query but not both at the same
time. Hence, it follows that the weak-function-hiding security of IPE is sufficient
to argue the computational indistinguishability for each step.

Therefore, to complete the proof of Theorem 4, it suffices to prove the follow-
ing lemma, which shows the computational indistinguishability of Hybℓ−1 and
Hybℓ.

Lemma 2. Suppose that the Decisional Linear assumption holds in G, and
CPRF satisfies correlated pseudorandomness. Then, Hybℓ−1 is computationally
indistinguishable from Hybℓ for any ℓ ∈ [Qkgen].

Proof. We consider a sequence of hybrid experiments. In all of these hybrids,
we unwrap the IPE ciphertexts cti,t and functional secret keys iski in terms of
ci, c

′
i and di,d

′
i respectively and make transformations to these terms to change

from Hybℓ−1 to Hybℓ one step at a time. We denote the ℓth KGen query by
y∗(0),y∗(1) and the randomness used to respond to this query by ρ∗.

Experiment Hybℓ−1. In Hybℓ−1, the challenger C uses the following components

ci =
(
(x̃i +UiAisi)

T , (−Aisi)
T
)T

c′i = VT
i ci,

38

di =
(
I,Ui

)T
ỹi +ViBiti, d′

i = −Biti

where x̃i, ỹi vary as follows based on the KGen query number and the user
being honest or corrupt. For any corrupt i ∈ K, the challenger uses x̃i =(
x
(1)
i , 0m,CPRF.Eval(Ki, t) + aiµi,t, µi,t

)
and ỹi =

(
y
(1)
i , 0m, ρ,−ρai

)
. For any

honest i ∈ H, C uses x̃i =
(
x
(1)
i ,x

(0)
i ,CPRF.Eval(Ki, t) + aiµi,t, µi,t

)
for all

Enc queries. For the first ℓ − 1 KGen queries, C uses ỹi =
(
0m,y

(0)
i , ρ,−ρai

)
and for the remaining Qkgen − ℓ + 1 number of KGen queries, C uses ỹi =(
y
(1)
i , 0m, ρ,−ρai

)
.

Experiment Hℓ−1,1. Hℓ−1,1 is almost same as Hybℓ−1 except that now the
challenger replaces JBitiK with JBiti + uiK for all honest i ∈ H, where ∀i ∈
H : ui ← Zk+1

q \ span(Bi) is additionally chosen by challenger during setup.
Consequently, for all honest i ∈ H,d′

i = −(Biti + ui) and di =
(
I,Ui

)T
ỹi +

Vi(Biti +ui) , whereas for all corrupt i ∈ K,d′
i = Biti and di =

(
I,UT

i

)T
ỹi +

ViBiti.

Claim 8 If the k-MDDH assumption holds in group G, then, experiments Hybℓ−1

and Hℓ−1,1 are computationally indistinguishable.

Proof. From k-MDDH assumption, it follows that (JBiK, JBitiK) and (JBiK, JBiti + uiK)
are computationally indistinguishable where Bi

$←Z(k+1)×k
q is of full rank k,

ti
$←Zk

q ,ui
$←Zk+1

q . Further, we know that the uniform distributions over Zk+1
q

and Zk+1
q \ span(Bi) are 1

q -close for Bi of rank k. Hence, it follows that Hybℓ−1

and Hℓ−1,1 are computationally indistinguishable.

Experiment Hℓ−1,2. Hℓ−1,2 is almost same as Hℓ−1,1 except that now for all
honest i ∈ H, we move all the randomness from ỹ∗ into the ciphertext component
c′i for all i ∈ [n], where ỹ∗ correspond to the ℓth KGen query. Specifically,
now, di =

(
I,UT

i

)T
ỹ∗
i +ViBiti, where ỹ∗

i =
(
y
∗(1)
i , 0m, 0, 0

)
instead of ỹ∗

i =(
y
∗(1)
i , 0m, ρ∗,−ρ∗ai

)
. Further, ci = VT

i ci −(b⊥
i)ρ

∗CPRF.Eval(Ki, t), where

b⊥
i ← orth(Bi) s.t. ⟨ui,b

⊥
i ⟩ = 1 is additionally chosen by challenger during

setup.

Claim 9 Experiments Hybℓ−1 and Hℓ−1,1 are identically distributed.

Proof. For all i ∈ [n], we know that Bi ∈ Z(k+1)×k
q , b⊥

i ∈ orth(Bi), Ui ∈
Zm×(k+1)
q and ρ∗ ∈ Zq, therefore, the following are identically distributed

Vi and Vi −
(
I,Ui

)T (
0m, 0m, ρ∗,−ρ∗ai

)T
(b⊥

i)
T

39

Therefore, substituting the latter in di and c′i, we get that

di =
(
I,Ui

)T
ỹ∗
i +

(
Vi −

(
I,Ui

)T (
0m, 0m, ρ∗,−ρ∗ai

)T
(b⊥

i)
T
)
(Biti + ui)

=
(
I,Ui

)T
ỹ∗
i +Vi(Biti + ui)−

(
I,Ui

)T (
0m, 0m, ρ∗,−ρ∗ai

)T
((b⊥

i)
TBiti

+ (b⊥
i)

Tui)

=
(
I,Ui

)T
ỹ∗
i +Vi(Biti + ui)−

(
I,Ui

)T (
0m, 0m, ρ∗,−ρ∗ai

)T
(0 + 1)

=
(
I,Ui

)T (
y
∗(1)
i , 0m, ρ∗,−ρ∗ai

)T
+Vi(Biti + ui)

−
(
I,Ui

)T (
0m, 0m, ρ∗,−ρ∗ai

)T
=
(
I,Ui

)T (
y
∗(1)
i , 0m, 0, 0

)T
+Vi(Biti + ui)

c′i =
(
Vi −

(
I,Ui

)T (
0m, 0m, ρ∗,−ρ∗ai

)T
(b⊥

i)
T
)T

ci

= VT
i ci − (b⊥

i)
(
0m, 0m, ρ∗,−ρ∗ai

) (
I,Ui

) (
(x̃i +UiAisi)

T , (−Aisi)
T
)T

= VT
i ci − (b⊥

i)
(
0m, 0m, ρ∗,−ρ∗ai

)
(x̃i +UiAisi −UiAisi)

= VT
i ci − (b⊥

i)
(
0m, 0m, ρ∗,−ρ∗ai

) (
x
(1)
i ,x

(0)
i ,CPRF.Eval(Ki, t) + aiµi,t, µi,t

)T
= VT

i ci − (b⊥
i)ρ

∗CPRF.Eval(Ki, t)

Experiment Hℓ−1,3. Almost identical to Hℓ−1,2, except that for each t la-
bel that appears first in an Enc query, the challenger C chooses {Ri,t}i∈H at
random from Zq subject to

∑
i∈H Ri,t = −

∑
i∈K CPRF.Eval(Ki, t). For hon-

est i ∈ H, the challenger C uses the following vector to answer Enc queries:
x̃i =

(
x
(1)
i ,x

(0)
i , Ri,t + aiµi,t, µi,t

)
and also sets c′i = VT

i ci − (b⊥
i)ρ

∗Ri,t.
Experiment Hℓ−1,3 is computationally indistinguishable from Hℓ−1,2 due to

the correlated pseudorandomness of CPRF.

Experiment Hℓ−1,4. Almost identical to Hℓ−1,3, except that the challenger
C chooses random {Ti,t}i∈H subject to

∑
i∈H Ti,t = −ρ∗ ·

∑
i∈K CPRF(Ki, t),

and uses c′i = VT
i ci − (b⊥

i)Ti,t in any Enc query for an honest i ∈ H.

Claim 10 Suppose that the Decisional Linear assumption holds in G. Then,
Hℓ−1,4 is computationally indistinguishable from Hℓ−1,3.

Proof. Similar to Claim 4

Experiment H′
ℓ−1,4. H′

ℓ−1,4 is almost same as Hℓ−1,4 except that now for
all honest i ∈ H, to answer the ℓth KGen query, the challenger uses ỹ∗

i =(
0m,y

∗(0)
i , 0, 0

)
instead of ỹ∗

i =
(
y
∗(1)
i , 0m, 0, 0

)
.

Claim 11 Experiments Hℓ−1,4 and H′
ℓ−1,4 are identically distributed.

40

Proof. We use the following change of variables for all honest i ∈ H

Vi → Vi −
(
I,Ui

)T (
y
∗(1)
i ,−y∗(0)

i , 0, 0
)T

(b⊥
i)

T

Ti,t → Ti,t −
(
(x

(1)
i)Ty

∗(1)
i − (x

(0)
i)Ty

∗(0)
i

)
Note that the latter change needs to be made subject to∑

i∈H
Ti,t = −ρ∗ ·

∑
i∈K

CPRF(Ki, t)

This needs the constrain that∑
i∈H

(x
(1)
i)Ty

∗(1)
i − (x

(0)
i)Ty

∗(0)
i = 0

The constraint is not an issue as the admissibility rule requires the adversary to
satisfy this constraint when sending queries.

Finally, observe that making the above change of variables leads to the fol-
lowing outcomes as defined in experiment H′

ℓ−1,4

di =
(
I,Ui

)T
ỹ∗
i +

(
Vi −

(
I,Ui

)T (
y
∗(1)
i ,−y∗(0)

i , 0, 0
)T

(b⊥
i)

T

)
(Biti + ui)

=
(
I,Ui

)T (
y
∗(1)
i , 0m, 0, 0

)T
+Vi(Biti + ui)−

(
I,Ui

)T (
y
∗(1)
i ,−y∗(0)

i , 0, 0
)T

=
(
I,Ui

)T (
0m,y

∗(0)
i , 0, 0

)T
+Vi(Biti + ui)

c′i =

(
Vi −

(
I,Ui

)T (
y
∗(1)
i ,−y∗(0)

i , 0, 0
)T

(b⊥
i)

T

)T

ci

− (b⊥
i)ρ

∗
(
Ti,t −

(
(x

(1)
i)Ty

∗(1)
i − (x

(0)
i)Ty

∗(0)
i

))
= VT

i ci − (b⊥
i)
(
y
∗(1)
i ,−y∗(0)

i , 0, 0
)(

x
(1)
i ,x

(0)
i ,CPRF.Eval(Ki, t) + aiµi,t, µi,t

)T
− (b⊥

i)ρ
∗
(
Ti,t −

(
(x

(1)
i)Ty

∗(1)
i − (x

(0)
i)Ty

∗(0)
i

))
= VT

i ci − (b⊥
i)
(
(x

(1)
i)Ty

∗(1)
i − (x

(0)
i)Ty

∗(0)
i

)
− (b⊥

i)ρ
∗
(
Ti,t −

(
(x

(1)
i)Ty

∗(1)
i − (x

(0)
i)Ty

∗(0)
i

))
= VT

i ci − (b⊥
i)ρ

∗Ti,t

Experiment H′
ℓ−1,3. Almost identical to H′

ℓ−1,4, except that the challenger uses
c′i = VT

i ci − (b⊥
i)ρ

∗Ri,t in any Enc query for an honest i ∈ H.

Experiment H′
ℓ−1,2. Almost identical to H′

ℓ−1,3, except that for honest i ∈ H,

the challenger C uses the vector x̃i =
(
x
(1)
i ,x

(0)
i ,CPRF.Eval(Ki, t) + aiµi,t, µi,t

)
to answer Enc queries and also sets c′i = VT

i ci − (b⊥
i)ρ

∗CPRF.Eval(Ki, t).

41

Experiment H′
ℓ−1,1. Almost identical to H′

ℓ−1,2, except that for honest i ∈ H,
the challenger C uses c′i = VT

i ci to answer Enc queries and to answer the ℓth

KGen query, it uses ỹ∗
i =

(
0m,y

∗(0)
i , ρ∗,−ρ∗ai

)
instead of ỹ∗

i =
(
0m,y

∗(0)
i , 0, 0

)
Experiment Hybℓ. Hybℓ is almost same as Hyb′ℓ−1,1 except that now the chal-
lenger replaces Biti+ui with Biti for all honest i ∈ H. Consequently, d′

i = Biti

and di =
(
I,Ui

)T
ỹi +ViBiti

Using a symmetric argument as before, we can prove that H′
ℓ−1,4 ≈c H

′
ℓ−1,3 ≈c

H′
ℓ−1,2 ≡ H′

ℓ−1,1 ≈c Hybℓ.

C Removing the All-or-Nothing Admissibility Rule

Recall that in our definition of MCIPE earlier in Section 3, the first admissibility
rule is of an “all-or-nothing” nature: it requires that if the adversary queries
one ciphertext for a label t, then it must query all honest clients’ ciphertexts
for the same label. In this section, we discuss how to remove this all-or-nothing
admissibility rule. Now, if the adversary does not query the complete set of
honest ciphertexts for a label t, we do not require the adversary to satisfy the
admissibility rule (Equation 6) for the label t.

Some prior works [CDG+20,ABG19] have described transformations for re-
moving the “all-or-nothing” admissibility rule. However, the prior transforma-
tions either only work for selective security in the function-hiding setting [CDG+20],
or incurs a linear in n blowup in the per-client ciphertext size [CDG+20,ABG19],
or rely on random oracles [CDG+20]. For example, the transformation of Ab-
dalla et al. [ABG19] incurs a linear in n blowup in the per-client ciphertext size.
The transformation by Chotard et al. [CDG+20] either uses a random oracle or
incurs a linear blowup in the ciphertext size. Further, Chotard et al. [CDG+20]’s
transformation is described for the function-revealing setting. When applied to
the function-hiding setting, it is not clear how to prove adaptive security, even
when the building blocks employed enjoy adaptive security.

In this section, we show how to remove the “all-or-nothing” admissibility rule
in a way that 1) preserves the asymptotical ciphertext size, and 2) does not
rely on random oracles, and 3) preserves the adaptive security of the underlying
building blocks.

Although high-level blueprint is similar to prior transformations [CDG+20,
ABG19], we make the following contributions. First, we construct a new “all-or-
nothing encryption” with succinct ciphertexts and without random oracles. Sec-
ond, we introduce a new technique for proving adaptive security in the function-
hiding setting. The blueprint [CDG+20, ABG19] is for each client to wrap its
MCIPE ciphertext in a layer of all-or-nothing encryption. In an all-or-nothing
encryption, unless a receiver has collected all n clients’ ciphertexts pertaining
to a certain label t, all (honest) encryptions remain secret. We define such an
all-or-nothing encryption scheme next.

42

C.1 Definition: All-Or-Nothing Encryption

Formally, an all-or-nothing encryption scheme (AoNE), parametrized by a plain-
text length m which is a polynomially bounded function of the security param-
eter λ, consists of the following possibly randomized algorithms.

– app, aSK1, . . . , aSKn ← Setup(1λ, n,m): the Setup algorithm takes in a
security parameter 1λ, the number of users n, the length of messages m and
outputs n client secret keys denoted aSK1, . . . , aSKn, respectively, and the
public parameters denoted app.

– ct← Enc(app, aSKi,x, t): takes in the public parameters app, a client secret
key aSKi, a plaintext message x ∈ {0, 1}m, and a label t ∈ {0, 1}∗, outputs
a ciphertext ct.

– x1, . . . , xn ← Dec(app, ct1, . . . , ctn): given n ciphertexts ct1, . . . , ctn gath-
ered from all clients. If all ciphertexts are associated with the same label,
output the decrypted messages x1, . . . ,xn. Else, output ⊥.

Correctness. Correctness is defined in the most natural way: for any λ ∈ N,
any x1, . . . ,xn ∈ {0, 1}m, and any t ∈ {0, 1}∗,

Pr

 (app, aSK1, . . . , aSKn)← Setup(1λ, n,m)
∀i ∈ [n] : cti ← Enc(app, aSKi,xi, t)
(x′

1, . . . ,x
′
n)← Dec(app, ct1, . . . , ctn)

: ∀i ∈ [n] : x′
i = xi

 = 1

Definition 5 (IND-security of AoNE). We say that an all-or-nothing encryp-
tion scheme is IND-secure, if for any non-uniform PPTadmissible adversary A,
the following two experiments AoNExpt0 and AoNExpt1 are computationally in-
distinguishable, where AoNExptb for b ∈ {0, 1} is defined as follows:

– Setup. The challenger C runs (app, aSK1, . . . , aSKn)← Setup(1λ, n,m) and
gives app to the adversary A. It then receives the corrupted set of users
K ⊂ [n] from the adversary A. The challenger C now gives the corrupted
keys {aSKi}i∈K to A.

– Query. The adversary A can adaptively submit encryption queries of the fol-
lowing form (i,x(0),x(1), t), and the challenger computes cti ← Enc(app, aSKi

,x(b), t) and returns cti to A.

We say that the adversary A is admissible iff the following conditions hold with
probability 1:
– For any encryption query (i,x(0),x(1), t) pertaining to a corrupted user i, it

must be that x(0) = x(1).
– For any label t for which the adversary A has submitted an encryption query

for every honest user, it must be that for every encryption query of the form
(i,x(0),x(1), t) pertaining to this label t, x(0) = x(1).

In the remainder of this section, we discuss how to remove the “all-or-nothing”
admissibility rule given such an all-or-nothing encryption scheme. Then, in Sec-
tion D.2, we show how to construct an efficient all-or-nothing encryption scheme
without random oracles.

43

C.2 Removing the All-or-Nothing Admissibility Rule for Weak
Function Hiding

As mentioned, we shall first prove that the upgraded scheme has adaptive weak-
function-hiding as a stepping stone. We first review the standard weak-function-
hiding definition [Lin17,SW21].

Definition 6 (Adaptive, weak-function-hiding IND-security of MCIPE).
We say that an MCIPE scheme is adaptive, weak-function-hiding IND-secure iff
for any non-uniform probabilistic polynomial-time (PPT) adversary A satisfy-
ing the following modified admissibility rules, its views in MCIPE-Expt0(1λ) and
MCIPE-Expt1(1λ) are computationally indistinguishable.

1-2. same as before (see Definition 1);
3. for any pair (y(0),y(1)) submitted in a KGen query where for b ∈ {0, 1},

y(b) := (y
(b)
1 , . . ., y(b)

n) ∈ {0, 1}mn, it must be that
(a) for i ∈ K, y(0)

i = y
(1)
i .

(b) for any {x(0)
i,t ,x

(1)
i,t }i∈H submitted in an Enc query,〈

(x
(0)
i,t)i∈H, (y

(0)
i)i∈H

〉
=
〈
(x

(1)
i,t)i∈H, (y

(0)
i)i∈H

〉
=
〈
(x

(1)
i,t)i∈H, (y

(1)
i)i∈H

〉
(8)

Additional terminology. Henceforth, we say that an MCIPE scheme satis-
fies adaptive (weak-)function-hiding AoN-IND-security iff it satisfies our (weak-
)function-hiding IND-security notion (Definition 2) where we impose the all-
or-nothing admissibility rule on the adversary. We say that an MCIPE scheme
satisfies adaptive (weak-)function-hiding IND-security iff it satisfies our (weak-
)function-hiding IND-security notion (Definition 2) with the exception that the
adversary need not respect the all-or-nothing admissibility rule; moreover, for
any label t for which the adversary has not made complete honest ciphertext
queries, the adversary need not satisfy Equation (6) for the label t.

The upgrade. We want to upgrade an MCIPE scheme that is adaptive function-
hiding AoN-IND-secure to one that is adaptive function-hiding IND-secure. As
mentioned, the idea is to simply wrap the MCIPE ciphertexts in another layer
of all-or-nothing encryption. However, it turns out difficult to directly prove the
adaptive security of this transformation in the function-hiding setting. Instead,
we go through a stepping stone. We first prove adaptive weak-function-hiding
of the resulting construction. Once we have an adaptive weak-function-hiding
MCIPE, we can use standard techniques [Lin17,SW21] to upgrade it to an adap-
tive function-hiding MCIPE scheme.

We now show how to upgrade an MCIPE scheme that is adaptive (weak-
)function-hiding AoN-IND-secure (henceforth denoted MCIPE) to one that is
adaptive weak-function-hiding IND-secure (henceforth denoted MCIPE∗).

– MCIPE∗.Gen(1λ): call pp← MCIPE.Gen(1λ) and output pp∗ = pp.

44

– MCIPE∗.Setup(pp∗,m, n):
1. call (mpk,msk, {eki}i∈[n])← MCIPE.Setup(pp,m, n),
2. call app, aSK1, . . . , aSKn ← AoNE.Setup(1λ).
3. Output mpk∗ := (mpk, app),msk∗ = msk, and for i ∈ [n], output ek∗i :=

(eki, aSKi).
– MCIPE∗.KGen(mpk∗,msk∗,y): call sk∗y ← MCIPE.KGen(mpk,msk,y) and

output sk∗y = sky.
– MCIPE∗.Enc(mpk∗, ek∗i ,xi, t):

1. call ct← MCIPE.Enc(mpk, eki,xi, t); and
2. output ct∗ := AoNE.Enc(app, aSKi, ct, t).

– MCIPE∗.Dec(mpk∗, sk∗y, {ct∗i,n}i∈[n]):
1. call ct1, . . . , ctn ← AoNE.Dec(app, ct∗1, . . . , ct

∗
n), and

2. output MCIPE.Dec(mpk, sky, {cti,n}i∈[n]).

Theorem 5. Suppose that the underlying MCIPE scheme is adaptive weak-function-
hiding AoN-IND-secure and AoNE is a secure all-or-nothing encryption scheme,
then the resulting MCIPE∗ scheme is adaptive weak-function-hiding IND-secure.

Proof. We can consider a sequence of hybrid games. Let qe denote the number
of unique labels for which encryption queries are made and let these labels be
t1, . . . , tqe in the order they are first queried.

AoNExp0. This is the real security game for MCIPE∗ where the challenger uses
the bit b = 0, and was defined earlier.

Hybℓ for ℓ ∈ 0, . . . , qe. Hybℓ is same as AoNExp0 except that for an encryption
query (i, tj ,x

(0)
i,tj ,x

(1)
i,tj) made for honest user i with label tj , the challenger’s

response changes as follows. If j > ℓ, then its response is same as in AoNExp0, i.e.,
it chooses x

(0)
d,tj to encrypt. If j ≤ ℓ, the challenger runs MCIPE.Enc algorithm

on input x(1) instead of x(0). Observe that from the above description, Hyb0 is
the same as AoNExp0.

Claim 12 Suppose that the underlying MCIPE scheme is adaptive weak-function-
hiding AoN-IND-secure and AoNE is a secure all-or-nothing encryption scheme,
then Hybℓ−1 is computationally indistinguishable from Hybℓ for all ℓ ∈ [qe].

Proof. We prove this by contradiction. The difference between the two hybrids is
in how the challenger responds to encryption queries for the label tℓ, i.e., the ℓ-th
distinct label that appears in an encryption query. The response for encryption
queries for all other labels is the same in the two hybrids. We will refer to tℓ as t∗
henceforth. We construct a reduction B which answers the adversary A’s queries
and show that if A can distinguish between Hybℓ−1 and Hybℓ with noticeable
probability, then, B can break either the adaptive weak-function-hiding security
of underlying MCIPE scheme with noticeable probability or the IND security of
the underlying AoNE with noticeable probability.

Reduction. B flips a random coin γ
$←{0, 1}. The logical meaning here is that

B guesses whether the label t∗ is eventually going to be complete. A label t is

45

said to be complete if the adversary has submitted at least one encryption query
pertaining to t for every honest client; otherwise, it is said to be incomplete.
γ = 0 indicates that B’s guess is that t∗ is going to be complete in which case B
will try to break the security of MCIPE via the adversary A. γ = 1 indicates that
B’s guess is that t∗ is going to be incomplete in which case B will try to break
the security of AoNE via the adversary A. Based on this guess, B simulates the
responses to encryption queries by A as follows:

– Case 1: γ = 0:
• In this case, B will interact with an MCIPE challenger which flips a ran-

dom coin β
$←{0, 1} to decide which of the two input messages to encrypt

for Enc queries, and which of the two keys to generate a key for KGen
queries. It will embed the public parameters sent by the MCIPE challenger
in the mpk. It then picks parameters of the AoNE scheme and embeds
the corresponding app in the public key.
• For any encryption query (i, t,x

(0)
i,t ,x

(1)
d,t) for a honest user i, if t ̸= t∗, then,

B responds exactly as in Hybℓ−1 by forwarding either the pair (x(0)
i,t ,x

(0)
i,t)

or the pair (x
(1)
i,t ,x

(1)
i,t) to the MCIPE challenger (depending on which

label is queried), and passing the ciphertext it obtains to the adversary.
If t = t∗, then, B forwards the pair (x

(0)
i,t ,x

(1)
i,t) to the MCIPE challenger

which sends back ciphertext ct
(β)
i,t corresponding to input x

(β)
i,t . B applies

the AoNE encryption layer on this ciphertext and sends the resulting
ciphertext ct

∗(β)
i,t to the adversary A.

• Whenever A sends a KGen query for the pair (y(0),y(1)), B ignores
y(1) and forwards the pair (y(0),y(0)) to the MCIPE challenger. It then
forwards the response to the adversary A.

• Finally, A sends its guess β′ to B. At this point, B checks if the label t∗ is
complete. If the label t∗ turns out to be complete, then, B outputs β′′ =

β′. Else, B outputs β′′ $←{0, 1}. Note that if the label t∗ is complete, even
if A may not respect the all-or-nothing admissibility rule, the reduction B
can always make up for any incomplete (non-challenge) label by sending
a pair of identical messages for any incomplete honest user to the MCIPE
challenger. In this way, B can respect the admissibility rule w.r.t. its own
MCIPE challenger.

– Case 2: γ = 1:
• In this case, B interacts with an AoNE challenger. The AoNE challenger

flips a random bit β
$←{0, 1} that decides which of the two inputs it will

encrypt. B embeds the app returned by the AoNE challenger in the public
key. B generates parameters of the MCIPE scheme by itself and embeds
the corresponding mpk in the public key.
• For any encryption query (i, t,x

(0)
i,t ,x

(1)
i,t) for a honest user i, if t ̸= t∗, then,

B responds exactly as in Hybℓ−1. If t = t∗, then, B computes the MCIPE

ciphertexts ct
(0)
i,t , ct

(1)
i,t corresponding to inputs x

(0)
i,t ,x

(1)
i,t respectively and

sends an AoNE encryption query (i, t, ct
(0)
d,t , ct

(1)
i,t) to the AoNE challenger.

46

The AoNE challenger sends back AoNE ciphertext ct
∗(β)
i,t corresponding

to input ct
(β)
i,t , which is forwarded to A.

• B answers any KGen query (y(0),y(1)) from A by honestly computing a
key for y(0).
• If A ever completes its queries for the label t∗, B simply aborts and

outputs a random bit β′′ $←{0, 1}. If at the end, A never completes the
queries for the challenge label t∗, let β′ be A’s output. In this case, B
outputs β′′ = β′.

Analysis. Observe that in both the above cases, the experiment is identical
(until B aborts) to Hybℓ−1 when β = 0 and identical to Hybℓ when β = 1. Until
the reduction B aborts, A gains no information about γ based on the responses
of B and hence the choice of γ cannot influence A’s choice of making the label
t∗ complete. In other words,

Pr[t∗ complete] = Pr[t∗ complete |γ = 0] = Pr[t∗ complete |γ = 1] (9)
Pr[t∗ incomplete] = Pr[t∗ incomplete |γ = 0] = Pr[t∗ incomplete |γ = 1] (10)

For the same reason, we have that

Pr[β′′ = β ∧ t∗ complete|γ = 0] = Pr[A wins ∧ t∗ complete] (11)
Pr[β′′ = β ∧ t∗ incomplete|γ = 1] = Pr[A wins ∧ t∗ incomplete] (12)

Now, let us calculate how B’s winning probability is related to that of A.

Pr[B wins] = Pr[β′′ = β] (13)
= Pr[β′′ = β|γ = 0]Pr[γ = 0] + Pr[β′′ = β|γ = 1]Pr[γ = 1] (14)

=
1

2
(Pr[β′′ = β|γ = 0] + Pr[β′′ = β|γ = 1]) (15)

Let us see what the two probabilities are.

Pr[β′′ = β|γ = 0] = Pr[β′′ = β ∧ t∗ complete |γ = 0]

+ Pr[β′′ = β|t∗ incomplete ∧ γ = 0]Pr[t∗ incomplete |γ = 0]
(by conditional probability)

= Pr[A wins ∧ t∗ complete]
+ Pr[β′′ = β|t∗ incomplete ∧ γ = 0]Pr[t∗ incomplete]

(by Equations 9, 10, and 11)

= Pr[A wins ∧ t∗ complete] +
1

2
Pr[t∗ incomplete]

47

Similarly, we also have the following:

Pr[β′′ = β|γ = 1] = Pr[A wins ∧ t∗ incomplete |γ = 1]

+ Pr[β′′ = β|t∗ complete ∧ γ = 1]Pr[t∗ complete]
(by Equations 9, 10, and 12)

=
1

2
Pr[t∗ complete] + Pr[A wins ∧ t∗ incomplete]

Plugging in these values back in Equation 15, we get the following:

Pr[B wins] =
1

4
+

1

2
Pr[A wins]

Therefore, if A has non-negligible advantage in distinguishing hybrids Hybℓ−1

and Hybℓ, then, B has non-negligible advantage in breaking one of the assump-
tions.

Hyb∗. Same as Hybqe except that for any KGen query (y(0),y(1)), the challenger
runs the MCIPE.KGen algorithm on input y(1) instead of y(0).

Claim 13 Suppose that the MCIPE scheme satisfies weak-function-hiding IND-
security. Then, Hyb∗ and Hybqe are computationally indistinguishable.

Proof. If an efficient adversary A can distinguish Hyb∗ and Hybqe with non-
negligible probability, we can construct the following reduction B that breaks
the weak-function-hiding IND-security of the underlying MCIPE. B interacts
with an MCIPE challenger, and embeds the public key received from the MCIPE
challenger in the term mpk. It chooses parameters of the AoNE on its own.
Whenever A sends an encryption query (i, t,x

(0)
i,t ,x

(1)
i,t) for some honest i, B

ignores x
(0)
i,t and forwards the tuple (i, t,x

(1)
i,t ,x

(1)
i,t) to the MCIPE challenger.

Whenever A makes a KGen query for a pair (y(0),y(1)), B forwards the pair
to the MCIPE challenger who outputs a key for y(β) which is then forwarded
to A. At the end, if A has not completed queries for any label t, B makes up
for it by sending an identical pair of messages to the MCIPE challenger for any
unqueried honest user for the label t. Finally, B outputs whatever A outputs. If
the MCIPE challenger’s bit β = 0, A’s view is identical as Hybqe ; else A’s view is
identical as Hyb∗. Therefore, if A has non-negligible advantage in distinguishing
Hybqe and Hyb∗, then B has non-negligible advantage in breaking the adaptive
weak-function-hiding security of MCIPE.

AoNExp1. This is the real security game for MCIPE∗ where the challenger uses
the bit b = 1. Observe that this experiment is identical to Hyb∗.

C.3 Upgrade from Weak to Full Function Hiding

We can employ a standard upgrade [Lin17,SW21] to go from weak to full function
hiding. In particular, our upgrade is identical to the one described in Section 5.4

48

of Shi and Wu [SW21]. The proof is identical to that of Theorem 5.9 of Shi and
Wu [SW21] — even though they only consider the selection operation in their
paper, this particular part of the proof actually works for inner-product too,
and moreover, it works when the adversary is not subject to the all-or-nothing
admissibility rule.

D Efficient All-or-Nothing Encryption Without Random
Oracles

In this section, we construct an efficient all-or-nothing encryption scheme with-
out random oracles. The earlier work of Chotard et al. [CDG+20] showed how
to construct all-or-nothing encryption. However, to achieve succinct ciphertext,
they need to rely on a random oracle.

D.1 Additional Preliminaries

The Decisional Bilinear Diffie-Hellman Assumption (DBDH). We say
that the Decisional Bilinear Diffie-Hellman Assumption holds in group G, which
is part of a bilinear group (G,GT), if the following two experiments are compu-
tationally indistinguishable:

1. Sample g = J1K $←G where G is a cyclic group of order q. Sample random
a, b, c

$←Zq. Output the tuple (J1K, JaK, JbK, JcK, JabcKT).

2. Sample g = J1K $←G where G is a cyclic group of order q. Sample random
a, b, c, z

$←Zq. Output the tuple (J1K, JaK, JbK, JcK, JzKT).

The Q-fold Decisional Bilinear Diffie-Hellman Assumption. We intro-
duce the Q-fold DBDH assumption for convenience in our proof, but we stress
that this assumption is actually implied by the standard DBDH assumption. We
say that the Q-fold Decisional Bilinear Diffie-Hellman Assumption holds in group
G, which is part of a bilinear group (G,GT), if the following two experiments
are computationally indistinguishable:

1. Sample g = J1K $←G where G is a cyclic group of order q. Sample random
a, b, c1, ..., cQ

$←Zq. Output the tuple (J1K, JaK, JbK, {JciK, JabciKT }i∈Q).

2. Sample g = J1K $←G where G is a cyclic group of order q. Sample random
a, b, c1, ..., cQ, z1, ..., zQ

$←Zq. Output the tuple (J1K, JaK, JbK, {JciK, JziKT }i∈Q).

Fact 3 For an adversary A against the Q-fold DBDH challenger, running within
time t, there exists an adversary B running within time t+2Q(tGT

+ tG), where
tGT

and tG denote respectively the time for an exponentiation in GT and G, such
that if A can break the Q-fold DBDH assumption with noticeable probability,
then, B can break the DBDH assumption with noticeable probability.

49

D.2 Construction

We follow the blueprint of efficient AoNE construction of Chotard et al. [CDG+20]
but instantiate the underlying identity-based encryption (IBE) with the construc-
tion by Waters [Wat05]. As this IBE was constructed without random oracles
and was proven to be IND-secure, our AoNE construction achieves the security
guarantees necessary for our MCIPE construction.

Let the label space T of AoNE be the same as the ID space {0, 1}m of IBE.
Henceforth, we use the terms label and ID interchangeably. Denote by H a
publicly computable function H : Gm+1 × {0, 1}m → G. For this construction,
H is defined as

H(ID) = v0

∏
i∈[m]

vIDi
i ,

where v is a random vector in Gm+1 generated as part of the public params.
Lastly, denote by SKE a symmetric key encryption scheme which is one-time
secure.

Efficient all-or-nothing encryption without random oracles

– Setup(1λ, n,m):
• let (G,GT , q, e, g, gT)← PGGen(1λ)

• let h
$←G and v

$←Gm+1

• For all i ∈ [n], sample αi
$←Zq and compute aSKi = hαi

• output app = (G,GT , q, e, g, h,v, g
α1 , . . . , gαn) and aSK1, . . . , aSKn

– Enc(app, aSKi,xi, t):

• Sample ρi
$←Zq and compute Ai

1 = e(
∏

j∈[n]

gαj , h)ρi , Ai
2 = gρi , Ai

3 =

H(t)ρi

• Sample ri
$←Zq and compute Bi

1 = hαi ·H(t)ri , Bi
2 = gri

• Compute the symmetric key as K = Ai
1 and encrypt xi using it as

cti ← SKE.Enc(K,xi)

• Compute a share of the decryption key as Si,t = (Ai
2, A

i
3, B

i
1, B

i
2)

• output cti = (cti, Si,t, t)

– Dec(app, ct1, . . . , ctn):
• Parse the ciphertexts for all i ∈ [n] as cti = (cti, Si,t, t),

where Si,t = (Ai
2, A

i
3, B

i
1, B

i
2)

• Compute B1 =
∏

j∈[n]

Bj
1 and B2 =

∏
j∈[n]

Bj
2

• ∀i ∈ [n], recover Ai
1 =

e(Ai
2,B1)

e(Ai
3,B2)

and then recover xi ← SKE.Dec(Ai
1, cti)

• output x1, . . . ,xn

50

Correctness. If the decryption algorithm can recover Ai
1’s correctly, then, by

the correctness of the symmetric key encryption scheme, our scheme’s output
must be correct. Therefore, we just need to show the Ai

1’s are recovered correctly.
If all the users correctly run the algorithm Enc with the same label t, then,
observe that

e(Ai
2, B1)

e(Ai
3, B2)

=
e(gρi , hΣαi ·H(t)Σri)

e(H(t)ρi , gΣri)

=
e(gρi , hΣαi) · e(gρi , H(t)Σri)

e(H(t)ρi , gΣri)

= e(gρi , hΣαi)

= e(gΣαi , h)ρi

= Ai
1.

D.3 Security Proof

Theorem 6. The above AoNE scheme satisfies IND-security under the DBDH
assumption.

Proof. Let qe ≤ qϵ
9m denote the number of unique IDs for which the adversary

sends at least one encryption query and denote the jth ID as IDj = tj . Let
qr denote the maximum number of encryption queries for any such unique ID.
Then, we prove security via a hybrid argument. For ℓ ∈ {1, ..., qe}, the hybrid
experiments are as follows:

Experiment Hybℓ,0. The challenger plays the game as defined in Appendix C.1
except the response to encryption queries for (·,x(0),x(1), tj) changes as follows
: for all j ≥ ℓ, the challenger encrypts x(0) and for all j < ℓ, the challenger
encrypts x(1).

Experiment Hybℓ,1. This experiment is similar to Hybℓ,0, except that in all the
encryption queries for the ℓth unique ID tℓ, the challenger uses an ephemeral
random value K to compute ctℓ ← SKE.Enc(K,x(0)). Here, x(0),x(1) are the
part of the encryption query sent by the adversary. Note that the adversary can
send multiple encryption queries for the same unique ID tℓ and the keys K are
ephemeral in the sense that they are sampled freshly and randomly for each such
encryption query.

Experiment Hybℓ,2. This experiment is similar to Hybℓ,1, except that in all the
encryption queries for the ℓth unique ID tℓ, the challenger encrypts x(1) instead
of x(0). That is, it computes ctℓ ← SKE.Enc(K,x(1)) where x(0),x(1) were the
part of the encryption query sent by the adversary.

Experiment Hybℓ,3. This experiment is similar to Hybℓ,2, except that in all the
encryption queries for the ℓth unique ID tℓ, the challenger restores back to using
the symmetric key K as in the original construction.

The sequence of experiments we follow is Hyb1,0, . . . ,Hyb1,3, Hyb2,0, . . . ,Hyb2,3,
. . . ,Hybqe,0, . . . ,Hybqe,3. Note that in experiment Hyb1,0, the challenger always

51

encrypts x(0) and hence this is same as AoNExpt0. In experiment Hybqe,1, the
challenger always encrypts x(1) and hence this is same as AoNExpt1. Further,
note that Hybℓ,3 = Hybℓ+1,0 for all ℓ ∈ [qe − 1]. Therefore, to prove that Hyb1,0
and Hybqe,3 are computationally indistinguishable, we need to show that for all
ℓ ∈ [qe]: Hybℓ,0 ≈c Hybℓ,1, Hybℓ,1 ≈c Hybℓ,2, Hybℓ,2 ≈c Hybℓ,3.

Observe that the one-time security of the symmetric key encryption directly
implies that Hybℓ,1 ≈c Hybℓ,2. Further, the other two experiment transitions
involve switching between honestly generated symmetric key K and randomly
sampled symmetric key K. Hence, it suffices to show that Hybℓ,0 ≈c Hybℓ,1 and
by similar argument it would follow that Hybℓ,2 ≈c Hybℓ,3.

Claim 14 Hybrid experiments Hybℓ,0 and Hybℓ,1 computationally indistinguish-
able under the DBDH assumption.

Proof. We prove this by contradiction. We show that if a PPT adversary A can
distinguish between Hybℓ,0 and Hybℓ,1 with noticeable advantage, then, we can
construct a PPT adversary B which breaks the qr-fold DBDH assumption with
noticeable advantage. This is sufficient to prove the claim since the qr-fold DBDH
assumption is implied by the DBDH assumption as stated in Fact 3.

Let k = 9qe/ϵ and let W = {−m(k − 1), . . . , 0} × {0, . . . , k − 1}m. For w ∈
W,y ∈ Zm+1

q and ID ∈ {0, 1}m, define the following functions:

F (ID) = w0 +
∑
i∈[m]

wiIDi, G(ID) = y0 +
∑
i∈[m]

yiIDi mod p

The reduction is as follows. We denote the ℓth unique ID as ID∗, that is, ID∗ =
tℓ. Note that the two hybrids differ in how the symmetric keys are generated
while responding to encryption queries for the ℓth unique ID. Also note that B
does not know ID∗ upfront.

Reduction. The DBDH challenger generates the pairing groups (G,GT , q, e, g, gT)
← PGGen(1λ) and the challenge tuple (g, g1 = ga, g2 = gb, {g3,i = gci , Ti}i∈[qr])

where a, b, c1, ..., cqr
$←Zq, β

$←{0, 1} and if β = 0, then, Ti = e(g, g)abci , else

Ti
$←GT . It sends all this to B which needs to guess β correctly to win the game.

Also, A sends a set of corrupt users K ⊂ [n] to B.
B will now embed this qr-fold DBDH challenge carefully in the game against

A. The term g1 will be embedded as part of the public key for some honest user
z ∈ [n] \ K as gαz := g1 = ga. The term g2 will be part of the public params as
h = g2 = gb, and the term g3,i’s will serve as randomness in encryption and Ti’s
will be used for selecting the symmetric keys for the honest user chosen above.
Observe that according to the above choices, the honest user z’s secret key aSKz

is supposed to be ha = gab. The simulator cannot know this value (because if it
did, then, it would be able to break the DBDH challenge trivially). Consequently,
B cannot simulate values Bz,j,s

1 , Bz,j,s
2 when ID = ID∗. To get around this hurdle,

observe that there must exist a honest user which is not queried on ID = ID∗.
This is because, for A to distinguish between Hybℓ,0 and Hybℓ,1, A must make an

52

encryption query with x(0) ̸= x(1) with noticeable probability, and conditioned
on this event, A retains noticeable advantage. Moreover, if it were the case that
A queries every user in [n], then, the last admissibility condition in the security
game gets violated as xs

0 ̸= xs
1 for some user. Thus, it is safe to assume that there

exists z ∈ [n] which in not queried at all for ID∗. Thus, B randomly guesses an
honest user z

$←[n] \ K which is not queried for ID∗. If B’s guess turns out to be
wrong, it aborts the protocol with A and sends a random guess to the DBDH
challenger. This results in a polynomial loss of security in the reduction.
B starts by sampling w

$←W,y
$←Zm+1

q , z
$←[n] \ K and sets vj = g

wj

2 gyj for
all j ∈ {0, . . . ,m}. Further, it sets h = g2 and for all j ∈ [n] \ {z}, B samples
αj

$←Zq and sets aSKj = hαj . For the honest user z, it sets gαz := g1. Finally, B
sends the public params app = (G,GT , q, e, g, h,v, g

α1 , . . . , gαn) and the secret
keys of corrupt users {aSKj}j∈K to the adversary A.

Next, we need to show how B simulates A’s Enc queries. Due to the admis-
sibility criteria, it must be the case that for any corrupt user, x(0) = x(1). So, B
honestly replies to those queries. Hence, it suffices to show how B simulates A’s
Enc queries for any honest user.

For an Enc query of the form (i,x(0),x(1), tj), where i is the ith user, IDj = tj

is the jth unique ID, and it is the sth query for this ID, B simulates the response
as follows.

Case 1: i = z and IDj = ID∗: This case never happens based on the choice of
user z as discussed above.

Case 2: i = z and IDj ̸= ID∗: If F (IDj) = 0 mod q, then, B sends back ⊥ to
A as it cannot simulate Bz,j,s

1 , Bz,j,s
2 . Else, B simulates as follows:

– Sample ρz,j,s
$←Zq and compute Az,j,s

1 = e(
∏

δ∈[n]

gαδ , h)ρz,j,s , Az,j,s
2 = gρz,j,s ,

Az,j,s
3 = H(IDj)

ρz,j,s just like the real world.

– Sample rz,j,s
$←Zq and compute

Bz,j,s
1 =

(
g
F (IDj)
2 gG(IDj)

)rz,j,s
· g

−
G(IDj)

F (IDj)

1 , Bz,j,s
2 = g

−1
F (IDj)

1 · grz,j,s .

– Choose Kz,j,s = Az,j,s
1 and compute ctz,j,s ← SKE.Enc(Kz,j,s,x(0))

– Compute the share of the decryption key Sj,s
z,tj = (Az,j,s

2 , Az,j,s
3 , Bz,j,s

1 , Bz,j,s
2)

– Send back the output ctz,j,s = (ctz,j,s, S
j,s
z,tj , IDj) to A

– After sending back all the responses, B receives a guess β′ ∈ {0, 1} from A
indicating that A thinks that the distribution belonged to Hybi,β′ . B sets
β′′ = β if it never sent ⊥ to A for any of the Enc queries, else it sets
β′′ $←{0, 1}.

Case 3: i ̸= z and IDj ̸= ID∗: Compute Ai,j,s
1 , Ai,j,s

2 , Ai,j,s
3 , Bi,j,s

1 , Bi,j,s
2 just like

in the real world and then compute Ki,j,s, cti,j,s, S
j,s
i,tj , cti,j,s, β

′′ as in Case 2.

53

Case 4: i ̸= z and IDj = ID∗: If F (ID∗) ̸= 0 mod q, then, B sends back ⊥ to A
as it cannot embed the DBDH challenge in a way that preserves the distribution
of Ai,j,s

1 , Ai,j,s
2 , Ai,j,s

3 as in the real world. Else, B simulates as follows:

– Compute Ai,j,s
1 = Ts · e(g3,s,

∏
δ∈[n]\{z}

hαδ), Ai,j,s
2 = g3,s, A

i,j,s
3 = g

G(ID∗)
3,s .

– Compute Bi,j,s
1 , Bi,j,s

2 just like in the real world and then compute Ki,j,s,
cti,j,s, S

j,s
i,tj , cti,j,s, β

′′ as in Case 2.

Finally, B forwards its guess β′′ to the qr-fold DBDH challenger. B wins the game
if β = β′′.

Analysis. First observe that for the simulated values vj = g
wj

2 gyj for all j ∈
{0, . . . ,m}, we get the following:

H(ID) = gw0
2 gy0

∏
i∈[m]

(
gwi·IDi
2 gyi·IDi

)
= g

F (ID)
2 gG(ID)

We justify that the simulated Bz,j,s
1 , Bz,j,s

2 in Case 2 and Ai,j,s
1 , Ai,j,s

2 , Ai,j,s
3 in

Case 4 are same as their real world distributions.

– Bz,j,s
1 , Bz,j,s

2 in Case 2: Notice that Bz,j,s
2 = g

−1
F (IDj)

1 · grz,j,s = g
rz,j,s− a

F (IDj) .
Let Rz,j,s = rz,j,s − a

F (IDj)
, then, Rz,j,s is uniformly random as rz,j,s is

uniformly random. Further, substituting rz,j,s = Rz,j,s +
a

F (IDj)
in Bz,j,s

1 , we
get that

Bz,j,s
1 =

(
g
F (IDj)
2 gG(IDj)

)Rz,j,s+
a

F (IDj) · g−
a·G(IDj)

F (IDj) = H(IDj)
Rz,j,s · gab.

Based on our simulated public key of user z, while we don’t know its secret
key, but its value is supposed to be aSKz = hαz = gab. Hence, it follows that
the distribution of Bz,j,s

1 , Bz,j,s
2 is same as in the real world.

– Ai,j,s
1 , Ai,j,s

2 , Ai,j,s
3 in Case 4: Observe that if β = 0, then Ts = e(g, g)abcs and

Ai,j,s
1 = e(gcs , gab) · e(g3,s,

∏
δ∈[n]\{z}

hαδ) = e(g3,s,
∏
δ∈[n]

hαδ).

Therefore, Ki,j,s is as in Hybℓ,0. Otherwise, if β = 1, then Ts is random,
and hence so is Ai,j,s

1 . Therefore, Ki,j,s is as in Hybℓ,1. Further, as g3,s =

gcs , hence, Ai,j,s
3 = gcs·G(ID∗). In real world distribution, Ai,j,s

3 should be
H(ID∗)cs . Hence, for the distributions to be the same, we need that H(ID∗) =
gG(ID∗). As F (ID∗) = 0 here, therefore it indeed is the case that H(ID∗) =
gG(ID∗). Hence, it follows that the distribution of Ai,j,s

1 , Ai,j,s
2 , Ai,j,s

2 is same
as in the real world.

To complete the proof, we have to resolve a remaining technical issue which
turns out to be well-known [Wat05,BR09]. The issue with the above simulator

54

is that the adversary A’s success probability could be correlated with the sim-
ulator B’s abort probability (where B sends ⊥ to A). To get around this issue,
Waters [Wat05] introduced artificial abort in their security proof; however, this
result in a large security parameter loss. An elegant work by Bellare and Risten-
part [BR09] showed a new security reduction without relying on artificial aborts,
and resulted in a tight security reduction. Bellare and Ristenpart’s argument was
also later used as a standard and popular technique in adaptive security proofs
of various constructions [LT19,Jag15].

Therefore, to complete the rest of the proof, we also apply the standard
techniques of Bellare and Ristenpart [BR09]. In particular, we have chosen the
parameter k of our reduction in the same way as that of Bellare and Risten-
part [BR09] so we can use exactly the same probability calculations as their
work. Now, by the proof of Theorem 3.1 of Bellare and Ristenpart [BR09], it
follows that if A can distinguish Hybℓ,0,Hybℓ,1 with noticeable probability, then,
the simulator B can break the DBDH assumption with noticeable probability.

E Alternative Selective Function-Hiding MCIPE

Our selective function-hiding construction in Section 5.1 acts as a warm-up for
our adaptive function-hiding construction. The selective notion requires that the
adversary submits the KGen queries ahead of all the encryption queries.

In this section, we show that if we consider a different model of selectivity,
where the adversary is required to submit all encryption queries ahead of KGen
queries, henceforth referred to as “selective*”, a variant of the strawman scheme
described in Section 2.2 can be proven secure if the SXDH assumption holds true,
IPE satisfies selective* function-hiding security and the CPRF satisfies correlated
pseudorandomness. We did not present this scheme earlier because we do not
know any easy way to modify it to eventually achieve adaptive security (see
also Appendix F).

The alternative construction that is selective* function-hiding secure is de-
scribed in Figure 1. Let IPE be a selective* function-hiding secure scheme instan-
tiated with asymmetric groups. That is pp contains the description of groups
G1,G2,GT and also a bilinear map description e : G1 × G2 → GT . Further, let
IPE encryption take inputs in source group G1 and KGen take inputs in source
group G2.

Theorem 7. Suppose that IPE satisfies selective*, function-hiding IND-security,
CPRF satisfies correlated pseudorandomness and moreover, the SXDH assump-
tion holds. Then, the above MCIPE scheme satisfies selective* function-hiding
IND-security.

Proof. (sketch.) The proof blueprint is similar to the selective security proof in
Section 5.1. We have an outer layer of hybrid experiments as depicted in Table 5
and an inner layer of hybrid experiments as depicted in Table 6. More specifically,
the hybrid sequence proceeds in a label-by-label fashion, where we switch one
label at a time. We shall order the unique labels by the time at which they show

55

Gen(1λ): let pp← IPE.Gen(1λ), and output pp.

Setup(pp,m, n):
– let (K1, . . . ,Kn) := CPRF.Gen(1λ, n, q);
– for i ∈ [n]: let imski ← IPE.Setup(pp, 2m+ 2);
– output mpk := pp, msk := {imski}i∈[n], and {eki := (imski,Ki)}i∈[n].

KGen(mpk,msk,y):

– sample ρ
$←Zq;

– let ỹi = (yi, 0
m, ρ, 0);

– let iski ← IPE.KGen(imski, JỹiK2), and output sky := {iski}i∈[n].

Enc(mpk, eki,xi, t):
– let x̃i = (xi, 0

m,CPRF.Eval(Ki, t), 0);
– let ct← IPE.Enc(imski, Jx̃iK1), and output ct.

Dec(mpk, sky, {cti,t}i∈[n]): let JvKT :=
∏

i∈[n] IPE.Dec(iski, cti), and output v :=

log(JvKT).

Fig. 1: Selective* function-hiding, multi-client inner-product encryption

up in an encryption query. For this proof, since we assume that the adversary
submits all encryption queries ahead of KGen queries, we can perform this
label-by-label hybrid sequence even when the label space may be exponentially
large.

Note that Tables 5 and 6 show only how the challenger generates ciphertext
and key components for an honest client i ∈ H. For a corrupted client i, the
security game stipulates that x(0)

i = x
(1)
i and y

(0)
i = y

(1)
i , and thus the challenger

simply runs the honest Enc or KGen algorithm as in the real world.
Proving the security of the outer hybrids sequence is straightforward and

similar to the outer hybrids in the selective security proof in Section 5.1. We
refer the reader to the proof of Theorem 2 for it.

Proving the security of the inner hybrids sequence is also similar to the
inner hybrids in the selective security proof in Section 5.1 except a few notable
differences as follows.

To change from Hℓ−1,2 to Hℓ−1,3, observe that both the terms (ρ, ρ ·Ri) are
present in the source group G2. Hence, we can change it to (ρ, Ti) through a
reduction to the SXDH assumption, or more specifically, the assumption that
DDH holds in G2. Notably, while Ri is shared across all KGen queries, the Ti

terms are freshly chosen for each KGen query.
To change from Hℓ−1,3 to H′

ℓ−1,3, for the honest user i, we need to choose a
particular encryption query (x

∗(0)
i ,x

∗(0)
i) for the challenge label to be embedded

in the functional secret keys. We choose this to be the first encryption query

56

Table 5: Sequence of hybrids. Here we show the vectors passed to the
underlying IPE’s Enc and KGen functions in each hybrid. Qt denotes the

maximum number of labels for which Enc queries are made by the adversary.
For conciseness, we write CPRF(Ki, t) as a shorthand for CPRF.Eval(Ki, t).

Note that the ρ term is sampled fresh at random for each KGen query.
Hybrid Enc KGen assumption

Real1
(
x
(1)
i , 0m,CPRF(Ki, t), 0

) (
y
(1)
i , 0m, ρ, 0

)
Hyb0

(
x
(1)
i , 0m,CPRF(Ki, t), 0

) (
y
(1)
i ,y

(0)
i , ρ, 0

)
FH-IND of IPE

Hybℓ
ℓ ∈ [Qt]

first ℓ distinct labels t:(
0,x

(0)
i ,CPRF(Ki, t), 0

)
remaining:(

x
(1)
i , 0m,CPRF(Ki, t), 0

) same as
Hyb0

explained
in Table 6

Hyb∗
(
0m,x

(0)
i ,CPRF(Ki, t), 0

) (
0m,y

(0)
i , ρ, 0

)
FH-IND of IPE

Real0
(
x
(0)
i , 0m,CPRF(Ki, t), 0

) (
y
(0)
i , 0m, ρ, 0

)
FH-IND of IPE

for this label ({x∗(0)
i , x∗(1)

i }i∈H). This is the step where we need the selective*
restriction.

The change from H′
ℓ−1,1 to Hybℓ follows due to the function-hiding security of

IPE, as well as the observation that the per user partial inner product in H′
ℓ−1,1

is:

⟨x∗(1)
i ,y

(1)
i ⟩+ ⟨x

∗(0)
i ,y

(0)
i ⟩ − ⟨x

∗(1)
i ,y

(1)
i ⟩+ CPRF(Ki, t

∗) · ρ

= ⟨x∗(1)
i − x

∗(1)
i ,y

(1)
i ⟩+ ⟨x

∗(0)
i ,y

(0)
i ⟩+ CPRF(Ki, t

∗) · ρ

= ⟨x∗(0)
i − x

∗(0)
i ,y

(0)
i ⟩+ ⟨x

∗(0)
i ,y

(0)
i ⟩+ CPRF(Ki, t

∗) · ρ
(Equation 5)

= ⟨x∗(0)
i ,y

(0)
i ⟩+ CPRF(Ki, t

∗) · ρ

F Why the Techniques of Tomida [Tom20] Fail

Tomida [Tom20] constructed a multi-input inner-product encryption that is
adaptive function-hiding secure. His construction uses an adaptive function-
hiding IPE in a black-box manner and works as follows.

Adaptive Function-hiding, multi-input inner-product
encryption [Tom20]

– Gen(1λ): let pp← IPE.Gen(1λ), and output pp.

57

Table 6: Selective* security: inner hybrids to go from Hybℓ−1 to Hybℓ.
Denote the ℓth unique label as t∗ and any encryption query for this label as

({x∗(0)
i , x∗(1)

i }i∈H). Denote the first encryption query for this label as ({x∗(0)
i ,

x
∗(1)
i }i∈H). “first ℓ− 1” means the first ℓ− 1 unique labels in encryption queries.

Note that the ρ term is sampled fresh at random for each KGen query. For the
user i ∈ H, the CPRF(Ki, t

∗) term is same for all KGen queries in Hℓ−1,1 and
H′

ℓ−1,1. Similarly, Ri is same across all KGen queries in Hℓ−1,2 and H′
ℓ−1,2.

But, Ti is sampled fresh at random for each KGen query in Hℓ−1,3 and H′
ℓ−1,3.

Hybrid assumption

Hybℓ−1 see Table 5

Hℓ−1,1

Enc : first ℓ− 1:
(
0m,x

(0)
i ,CPRF(Ki, t), 0

)
ℓ-th:

(
x
∗(1)
i , 0m, 0, 1

)
remaining:

(
x
(1)
i , 0m,CPRF(Ki, t), 0

)
KGen :

(
y
(1)
i ,y

(0)
i , ρ,CPRF(Ki, t

∗) · ρ
)

FH-IND
of IPE

Hℓ−1,2

Enc : same as Hℓ−1,1

KGen :
(
y
(1)
i ,y

(0)
i , ρ, Ri · ρ

)
where

∑
i∈H Ri = −

∑
i∈K CPRF(Ki, t

∗)

correlated
pseudorand.

of CPRF

Hℓ−1,3

Enc : same as Hℓ−1,1

KGen :
(
y
(1)
i ,y

(0)
i , ρ, Ti

)
where

∑
i∈H Ti = −ρ ·

∑
i∈K CPRF(Ki, t

∗)

SXDH

H′
ℓ−1,3

Enc : same as Hℓ−1,1

KGen :
(
y
(1)
i ,y

(0)
i , ρ, Ti + ⟨x∗(0)

i ,y
(0)
i ⟩ − ⟨x

∗(1)
i ,y

(1)
i ⟩

)
where

∑
i∈H Ti = −ρ ·

∑
i∈K CPRF(Ki, t

∗)

identically
distributed

H′
ℓ−1,2

Enc : same as Hℓ−1,1

KGen :
(
y
(1)
i ,y

(0)
i , ρ, Ri · ρ+ ⟨x∗(0)

i ,y
(0)
i ⟩ − ⟨x

∗(1)
i ,y

(1)
i ⟩

)
where

∑
i∈H Ri = −

∑
i∈K CPRF(Ki, t

∗)

SXDH

H′
ℓ−1,1

Enc : same as Hℓ−1,1

KGen :
(
y
(1)
i ,y

(0)
i , ρ,CPRF(Ki, t

∗) · ρ+ ⟨x∗(0)
i ,y

(0)
i ⟩ − ⟨x

∗(1)
i ,y

(1)
i ⟩

) correlated
pseudorand.

of CPRF

Hybℓ see Table 5 FH-IND
of IPE

– Setup(pp,m, n):

58

• for i ∈ [n]: let imski ← IPE.Setup(pp, 2m+ 1), and ui
$←Zm

q ;
• output mpk := pp, and msk := {imski,ui}i∈[n].

– KGen(mpk,msk,y):
• sample uniformly random values r1, . . . , rn ∈ Zq subject to the con-

straint that −
∑

i∈[n]

ri =
∑

i∈[n]

⟨ui,yi⟩

• let ỹi = (yi, 0
m, ri);

• let iski ← IPE.KGen(imski, JỹiK), and output sky := {iski}i∈[n].

– Enc(mpk,msk, i,xi):
• let x̃i = (xi + ui, 0

m, 1);
• let cti ← IPE.Enc(imski, Jx̃iK), and output cti.

– Dec(mpk, sky, {cti}i∈[n]): let JvKT :=
∏

i∈[n] IPE.Dec(iski, cti), and out-
put v := log(JvKT).

The security of the above scheme can be proven using the sequence of hybrids
as in Table 7. The key idea here is to rely on the function-hiding security of the
underlying IPE to switch to a hybrid (i.e., Hyb1) where we first choose the vectors
ui and vi before simulating ciphertexts and secret keys; the ui and vi will later
be used during a critical information-theoretic step. Note that the vectors ui and
vi are chosen upfront for each user i ∈ [n], and are then reused in all queries.

It is not clear how to make their proof idea work in the presence of multiple
labels. In particular, the key information-theoretic step (i.e., from Hyb1 to Hyb2)
breaks when there are multiple labels. This, in itself, is not surprising because
clearly their scheme is not designed to prevent mix-and-match across labels. On
the other hand, there also does not seem to be any easy way to modify their
proof and make it work for multiple labels, even if we introduced the CPRF terms
(like in our scheme) to help prevent mix-and-match. One tempting idea might
be to do a label-by-label hybrid, i.e., switch one label at a time. It is clear that
non-trivial new techniques are needed to make this idea work, since obviously
the proof must make use of the security of the CPRF. Further, even if we could
make it work, it seems like such a proof would only work if the label space is
polynomial in size. In comparison, our construction and proof are not subject
to this restriction. While it is an interesting open question whether one can get
an alternative proof if we are willing to assume a small label space through a
label-by-label hybrid sequence, doing so is outside the scope of this work.

59

Table 7: Sequence of hybrids for Tomida’s [Tom20] MIFE. Here, x̃i,j

denotes the plaintext vector for the i-th user during the j-th encryption query,
and ỹi,k denotes the key vector for the i-th user during the k-th KGen query.

Hybrid x̃i,j ỹi,k −
∑

i∈[n]

ri,k assumption

Real1
(
x
(1)
i,j + ui, 0

m, 1
) (

y
(1)
i,k , 0

m, ri,k
) ∑

i∈[n]

⟨ui,y
(1)
i,k ⟩

Hyb0

(
x
(1)
i,j + ui, 0

m, 1
) (

y
(1)
i,k ,y

(0)
i,k , ri,k

) ∑
i∈[n]

⟨ui,y
(1)
i,k ⟩ FH-IND of IPE

Hyb1

(
x
(1)
i,j + ui,vi, 1

) (
y
(1)
i,k ,y

(0)
i,k , ri,k

) ∑
i∈[n]

(
⟨ui,y

(1)
i,k ⟩+⟨vi,y

(0)
i,k ⟩

)
FH-IND of IPE

Hyb2

(
x
(1)
i,j−x

(1)
i,1 + ui,x

(0)
i,1+vi, 1

) (
y
(1)
i,k ,y

(0)
i,k , ri,k

) ∑
i∈[n]

(
⟨ui,y

(1)
i,k ⟩+ ⟨vi,y

(0)
i,k ⟩

)
identical

Hyb3

(
ui,x

(0)
i,j +vi, 1

) (
y
(1)
i,k ,y

(0)
i,k , ri,k

) ∑
i∈[n]

(
⟨ui,y

(1)
i,k ⟩+ ⟨vi,y

(0)
i,k ⟩

)
FH-IND of IPE

Hyb4

(
0m,x

(0)
i,j + vi, 1

) (
y
(1)
i,k ,y

(0)
i,k , ri,k

) ∑
i∈[n]

⟨vi,y
(0)
i,k ⟩ FH-IND of IPE

Real0
(
x
(0)
i,j + vi, 0

m, 1
) (

y
(0)
i,k , 0

m, ri,k
) ∑

i∈[n]

⟨vi,y
(0)
i,k ⟩ FH-IND of IPE

60

	Multi-Client Inner Product Encryption: Function-Hiding Instantiations Without Random Oracles

