
Carnegie Mellon University 
 

CARNEGIE INSTITUTE OF TECHNOLOGY 
 
 

THESIS 
 

SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS 
 
 

 FOR THE DEGREE OF Master of Science  

 
       
 
 
 
 
 

 
TITLE     
 
 
     
 
 
 
PRESENTED BY     

 
 

 
ACCEPTED BY THE DEPARTMENT OF  

 
 
                 Information Networking Institute  
 
 
 
 ____________________________________________  ________________________  
  THESIS ADVISOR   DATE 

 
 
 ____________________________________________  ________________________  

  ACADEMIC ADVISOR  DATE 
 

 
 ____________________________________________  ________________________  

  DEPARTMENT HEAD  DATE 
 

 
 
APPROVED BY THE COLLEGE COUNCIL 
 
 
 ____________________________________________  ________________________   

  DEAN  DATE 

Multi-Input Inner Product Encryption: Function-hiding

instantiations without Random Oracles

Nikhil Vanjani



Multi-Input Inner Product Encryption:

Function-hiding instantiations without

Random Oracles

Submitted in partial fulfillment of the requirements for

the degree of

Master of Science

in

Information Security

Nikhil Vanjani

B. Tech., Computer Science and Engineering
Indian Institute of Technology Kanpur, India

Carnegie Mellon University
Pittsburgh, PA

December, 2021



© Nikhil Vanjani, 2021
All Rights Reserved



Acknowledgements

I would like to thank my committee members:

• Elaine - for being an inspiring and supportive mentor and for helping me understand

subtle yet crucial aspects of cryptography.

• Ke - for helping me kickstart with the research done during this thesis.

I am thankful to the Information Networking Institute at Carnegie Mellon University for

supporting this research in part through a tuition scholarship.

I would also like to thank my family and friends for their support throughout this journey.

ii



Abstract

In a Multi-Input Functional Encryption (MIFE) scheme, n clients each obtain a secret

encryption key from a trusted authority. Each client i can encrypt its data using its secret

key. The authority can use its master secret key to compute a functional key given a function

f, and the functional key can be applied to a collection of n clients’ ciphertexts, resulting in

the outcome of f on the clients’ data. If an MIFE scheme hides not only the clients’ data

but also the function f, we say it is function hiding. In this work, we study function-hiding

security of two variants of MIFE for inner-product computations.

Multi-Client Functional Encryption (MCFE) is a strengthening of MIFE where clients

associate their encrypted data with some time step t and the outcome of f can be computed

only on ciphertexts encrypted to the same time step. Although MCFE for inner-product

computation has been extensively studied, most earlier works on MCFE do not achieve func-

tion privacy. The recent work by Agrawal et al. showed how to construct a function-hiding

MCFE for inner-product from standard assumptions and the existence of a random oracle.

An intriguing open question is whether we can achieve the same without random oracles. In

this work, we are the first to show such a function-hiding MCFE for inner products, relying

on the standard Decisional Linear assumption. Our main technical contribution is a new up-

grade from single-input functional encryption for inner-products to a multi-client one; and,

if the single-input scheme is function-hiding, so is the resulting multi-client scheme.

Ad Hoc MIFE (AMIFE) is a decentralized version of MIFE. In AMIFE, the users can

jointly decide in a decentralized way what function they would allow to be evaluated on

their joint data. The aforementioned work by Agrawal et al. also showed how to construct

a function-hiding AMIFE scheme for inner-products, relying on standard bilinear group

assumptions, and without random oracles. We construct a new AMIFE scheme that provides

the same security guarantees as this earlier work but our construction provides a nicer

abstraction making the scheme and the security proofs conceptually simpler.
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1

Introduction

Multi-Input Functional Encryption (MIFE), first proposed by Goldwasser et al. [GGG`14,

GGJS13,GKL`13], allows us to evaluate certain functions on multiple users’ encrypted data.

In MIFE, a trusted setup gives an encryption key to each of n users, and then each user

i can use its encryption key to encrypt some value xi. A data analyst can ask the trusted

setup for a cryptographic token to evaluate a specific function f . Equipped with the token,

the data analyst can evaluate the outcome fpx1, . . . , xnq when presented with n ciphertexts

each encoding x1, . . . , xn, respectively.

It is also well-understood that the MIFE formulation suffers from a couple limitations.

The first notable limitation is that it does not make any attempt to limit the mix-and-match

of ciphertexts. The evaluator can take any combination of users’ ciphertexts, one from each

user, to evaluate the function f . As a simple example, imagine that two users each encrypted

two values, x0, x1 and y0, y1, respectively. Then, the evaluator can learn the outcome of

fpxb0 , yb1q for any combination of b0, b1 P t0, 1u. In some applications, this may be too much

leakage, and we want to limit the extent of mix-and-match. As a result, a related notion

called Multi-Client Functional Encryption (MCFE) was introduced [SCR`11,GGG`14].

An MCFE scheme works well in a “streaming” setting: imagine that in every time

step t, each user i encrypts a value xi,t. Given the ciphertexts, the evaluator can evaluate
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fpx1,t, . . . , xn,tq for each time step t, but it cannot mix-and-match the ciphertexts across

different time steps and combine them in the evaluation. This greatly restricts the inherent

leakage of the scheme. More generally, MCFE schemes allow users to encrypt to a label t,

and only ciphertexts encrypted to the same label t can be used together during the functional

evaluation.

Another limitation of MIFE is that it encourages centralization as a trusted third party

is needed for setup phase, and the same trusted party can decide what function to compute

on the users’ data. Therefore, to overcome these limitations an elegant new notion called

Ad Hoc MIFE (AMIFE) was introduced [ACF`20].

In AMIFE, every user locally runs the setup algorithm and posts their public keys to a

public bulletin board. Later, the users can jointly decide what function they would allow

to be evaluated on their joint data. To authorize a function f to be evaluated, each user

creates a piece of a token for the function f , and posts it to a public bulletin board. When

we collect all pieces from a set U of users, we can then evaluate the function f on the inputs

from users in U .

In this paper, we explore the following question left open by these lines of work.

Can we construct a function-hiding MCFE and AMIFE scheme for inner product evalu-

ation from standard assumptions, without random oracles?

An MCFE or AMIFE scheme is said to be function hiding, iff the token additionally hides

the function f being evaluated.

Prior results. To put our work in context, it is helpful to first review the prior results in

this space. For general functions, we currently do not know how to construct MIFE schemes

(including MCFE/AMIFE) without relying on indistinguishability obfuscation. However,

for inner-product computation, prior work constructed MCFE from standard assumptions

without the function hiding requirement. For example, function-revealing MCFE for inner

products can be constructed from either bilinear group assumptions [CDG`18, ABG19] or

lattices [LT19]. Function-revealing AMIFE for inner products can also be constructed from

2



standard assumptions [ACF`20]. When it comes to function hiding, we know how to con-

struct function-hiding MIFE for inner-products from standard bilinear group assumptions,

due to the elegant work by Abdalla et al. [ACF`18]. However, for the strengthened abstrac-

tion MCFE, a function-hiding construction is unknown. Unfortunately, the function-hiding

techniques of [ACF`18] are not compatible with MCFE or AMIFE — we explain the tech-

nical difficulties that arise in more detail in Section 1.2, and perhaps for these reasons, how

to construct function-hiding MCFE from standard assumptions still eludes us. It is worth

noting that if we are allowed to assume the existence of random oracles, then the recent work

of Agrawal et al. [AGT21b] presents a solution. In fact, they construct a scheme called a

Dynamic Decentralized Functional Encryption (DDFE) scheme for inner products assuming

bilinear groups and the existence of random oracles. In particular, the DDFE abstraction

unifies the benefits of MCFE and AMIFE; and therefore their result directly gives rise to a

corresponding MCFE/AMIFE scheme for inner-product too. Moreover, the AMIFE scheme

that arises as a consequence does not need random oracles.

1.1 Our Results and Contributions

We advance the state of our understanding regarding function-hiding instantiations of MCFE,

AMIFE for inner products. For MCFE, we provide the first function-hiding construction

from standard bilinear group assumptions. For AMIFE, we provide a conceptually simpler

function-hiding construction from standard bilinear group assumptions.

Specifically, we prove the following theorems.

Theorem 1.1.1 (Function-hiding MCFE for inner-products without random oracles). As-

suming the Decisional Linear assumption in bilinear groups, there exists a function-hiding

MCFE scheme for inner-products that satisfies a standard selective, indistinguishability-based

security notion (same as the security notion in prior works [AGT21b, SW21] and formally

defined in Section 3.1).

Theorem 1.1.2 (Function-hiding AMIFE for inner-products without random oracles). As-
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suming the Decisional Linear and Decisional Bilinear Diffie-Hellman assumptions in suitable

bilinear groups, there exists a function-hiding AMIFE scheme for inner-products that sat-

isfies a standard selective, indistinguishability-based security notion (same as the security

notion in prior works [AGT21b] and formally defined in Section 3.2).

Additional contributions. Notably, both our MCFE and AMIFE constructions are conceptu-

ally simpler than some prior constructions (even when compared with some prior schemes

without function-hiding). Our schemes are also asymptotically efficient and potentially im-

plementable. The techniques we use to get our results may also be of independent interest

as we explain below.

• A new upgrade from single-input to multi-client. To get our MCFE result, we sug-

gest a new technique for upgrading a single-input function-hiding inner-product functional

encryption scheme (satisfying certain properties) to a multi-client one. Our upgrade is

new and improves the state of the art in the following senses. Abdalla et al. [ABG19]

showed how to upgrade a single-input inner-product functional encryption scheme satisfy-

ing certain properties (henceforth referred to as IPE) to a multi-client one. Their upgrade

does not require random oracles, but it suffers from a couple drawbacks: 1) even if the

original IPE scheme is function-private, their upgrade does not preserve function privacy;

and 2) their upgrade incurs a Θpnq blowup in the per-client ciphertext size. In com-

parison, our work preserves the function privacy property if the original IPE is function

private; moreover, we incur only constant blowup in the per-client ciphertext size. The

recent construction of Agrawal et al. [AGT21b] can also be viewed as an upgrade from a

function-hiding IPE to a function-hiding MCIPE scheme — however, as mentioned, their

construction critically relies on a random oracle.

• A new upgrade from single-input to ad-hoc multi-input. To get our AMIFE result,

we propose a new upgrade from a single-input function-hiding inner-product functional

encryption scheme , to an ad-hoc, multi-input one. In comparison, the prior work of

[ACF`20] suggests an approach to compile an MIFE scheme into an AMIFE scheme.
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Their transformation works for general functionalities, but it suffers from the following

drawbacks: 1) their approach is inherently not function-hiding; 2) their scheme is not

concretely efficient and incurs a large polypλq blowup where λ is the security parameter,

since their scheme involves evaluating an MIFE scheme under a 2-round multi-party

computation protocol; and 3) their scheme does not support evaluation among a dynamic

set of users, i.e., all users must participate to evaluate any function. In contrast, our

approach preserves function privacy, is concretely efficient as it does not involve a multi-

party computation protocol and enables a dynamic set of users to evaluate some inner-

product function over their joint plaintexts.

1.2 Additional Related Work

Multi-input functional encryption. Multi-input functional encryption (MIFE) was first pro-

posed by Goldwasser et al. [GGG`14], who constructed an MIFE scheme for general functions

assuming indistinguishability obfuscation and other standard cryptographic assumptions. A

line of subsequent works [AGRW17,ACF`18,AGT21a] explored how to get MIFE for inner

products and quadratic functions from standard assumptions, without resorting to program

obfuscation. Notably, the work of Abdalla et al. [ACF`18] gave a function-hiding MCFE

for inner products from standard bilinear group assumptions. Unfortunately, their func-

tion privacy techniques do not readily extend to MCFE or AMIFE — as mentioned, MCFE

and AMIFE both impose more stringent syntactic and/or security requirements than MIFE.

More specifically, their function privacy techniques for MIFE fail in the context of AMIFE,

because they require that all key components share the same random coins — this does

not work when the key components must be generated by the parties in a distributed fash-

ion without coordination. Their function privacy techniques fail for the MCFE context,

not only because MCFE restricts the mix-and-match for ciphertexts with different labels,

but also because the presence of corrupt clients in MCFE complicates the function-hiding

construction and proof. In particular, when a functional key is released to the adversary,

the key components corresponding to corrupt players disclose some information about the
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shared secret randomness used in the functional key computation (across all coordinates).

This technicality creates significant challenges in the construction and proofs.

Multi-client functional encryption. Multi-Client Functional Encryption (MCFE) was first sug-

gested by Shi et al. [SCR`11] (referred to as “private stream aggregation” in their work),

but they considered only the simple summation function (and thus there is only one func-

tional key globally). Goldwasser et al. [GGG`14, GKL`13, GGJS13] generalized MCFE to

support arbitrary polynomial-time functions, and suggested a construction relying on In-

distinguishability Obfuscation (iO) [GGH`13] the existence of a random oracle, and other

standard assumptions; and their scheme is not function hiding.

Several prior works [ABG19, ABM`20, CDG`18, LT19, AGT21b] considered MCFE for

inner products. Among them, the only work that achieved function privacy is the work of

Agrawal et al. [AGT21b], but their scheme relies on a random oracle. All earlier schemes

do not achieve function privacy; moreover, a subset of these results [ABM`20, AGT21b,

CDG`18] needed a random oracle.

Very recently, the work of Shi et al. [SW21] consider a simple special case of inner-

product, that is, “selection”. Selection is the task of selecting one coordinate from the

plaintext vector, i.e., inner product with a special vector where one coordinate is set to 1,

and all other coordinates are set to 0. Shi et al. showed how to achieve function privacy in

an MCFE scheme for the special selection operator, and moreover, they used the resulting

scheme to construct a non-interactive anonymous router. Their function privacy technique

does not readily extend to inner products. In particular, their proof techniques are tightly

coupled with the fact that the key vector is a selection vector.

Ad-hoc multi-input functional encryption. Ad hoc multi-input functional encryption (AMIFE)

was first proposed by Agrawal et al. [ACF`20]. They proposed a paradigm to construct AM-

IFE for inner products (aka AMIIPE) from certain “ad hoc friendly” MIFE schemes. To do

so, they also used 2-round MPC as an ingriedient. All of their building blocks are known

6



from standard assumption and hence is their result. The MPC-based paradigm of Agrawal

et al. [ACF`20] inherently needs the function description in plain for the MPC protocol and

thus there is no straightforward way to achieve function-hiding security for constructions

based on such paradigm. Subsequently, Chotard et al. [CDSG`20] generalized the notion

of AMIFE to dynamic decentralized functional encryption (DDFE) which can be seen AM-

IFE but in the multi-client setting. Agrawal et al. [AGT21b] constructed function-hiding

DDFE for inner-products assuming random oralces. In their construction, random oracles

are needed for the labels arising due to the multi-client setting. But when their construction

is considered in the restricted multi-input setting (equivalently, AMIFE), random oracles

are not needed anymore. While our function-hiding AMIFE construction matches the se-

curity guarantees and assumptions with this construction, it combines insights from prior

works [ACF`20, CDSG`20] to provide a nicer abstraction, thus making the scheme and

security proofs conceptually simpler.
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2

Overview of Our Constructions and Techniques

We now give an informal overview of our construction and proof techniques. In our subse-

quent technical sections, we will present formal definitions, detailed scheme description, and

formal proofs.

Notations. Throughout, we will use boldface letters such as x to denote vectors. Given a

bilinear group G ˆ G Ñ GT of prime order q, we use the notation JxK and JxKT to denote

the group encoding of x P Zq; and a similar notation is used for vectors too.

2.1 Function-Hiding Multi-Client Inner-Product Encryption

2.1.1 Building Blocks

Our schemes makes use of a single-input, function-hiding functional encryption scheme for

computing “inner-product in the exponent”, henceforth denoted IPE. We assume that IPE

is built from bilinear groups; moreover, we want the following nice property: the encryption

algorithm (denoted Enc) and the functional key generation algorithm (denoted KGen)

should work even when taking in the group encoding of the plaintext or key vector rather

than the vector itself. Indeed, known constructions of IPE satisfy this nice property [BIK`17,

ABG19,SW21] — see Section 4.4 for details.
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Additionally, we make use of a correlated pseudorandom function, denoted CPRF. In

a CPRF scheme, each client i P rns obtains a secret key Ki from a trusted setup. Then,

given a message x, the user can compute CPRF.EvalpKi, xq to obtain an outcome that is

computationally indistinguishable from random, subject to the constraint that

ÿ

iPrns

CPRF.EvalpKi, xq “ 0 (2.1)

Furthermore, even when a subset of the clients may be corrupted, the outcomes of the honest

clients’ evaluations are nonetheless pseudorandom subject to the constraint in Equation (2.1)

— see Section 4.5 for the formal definition. Earlier works have shown how to construct such

a CPRF assuming the existence of pseudorandom functions.

2.1.2 Our Construction

We sketch our construction below — a more formal presentation can be found in subsequent

technical sections. In our scheme the public parameters are just the public parameters of

the underlying IPE scheme.

• Setup: during a setup phase, we run n independent instances of IPE.Setup to sample

n secret keys denoted imsk1, . . . , imskn, respectively. We also run the setup algorithm

of the CPRF, and obtain K1, . . . , Kn. Finally, we generate a random ai
$
ÐZq for each

client i P rns.

In summary, each client’s secret key is composed of the terms pimski, Ki, aiq, and the

master secret key is simply the union of all clients’ secret keys.

• KGen: an authority with the master secret key can compute a functional key for the

vector y “ py1, . . . ,ynq P Zm¨nq as follows:

tiski :“ IPE.KGenpimski, ryiquiPrns where ryi “ pyi, 0
m, ρ,´ρai, 0q

for some fresh random ρ
$
ÐZq

9



• Enc: for a client i P rns to encrypt a vector xi P Zmq to some label t, it samples µi,t
$
ÐZq

if it has not been sampled before, and outputs the following ciphertext:

IPE.Enc pimski, rxiqwhere rxi “pxi, 0
m,CPRF.EvalpKi, tq ` aiµi,t, µi,t, 0q

• Dec: to decrypt, simply use each iski to decrypt the ciphertext cti from the i-th client

and obtain a partial decryption pi; then, output the discrete log of
ś

iPrns pi. Since

decryption requires computing discrete logarithm, the outcome of the inner-product

computation must lie within a polynomially-bounded space for the decryption to be

efficient.

It is not hard to verify correctness. Suppose that ct1, . . . , ctn are n honestly generated

ciphertexts all for the same label t, and for plaintext vectors x1, . . . ,xn, respectively. Further,

suppose that pisk1, . . . , isknq is the functional key for the vector y “ py1, . . . ,ynq. Then,

applying iski to cti gives the partial decryption result

pi “ Jxxi,yiy ` ρ ¨ CPRF.EvalpKi, tq ` ρ ¨ aiµi,t ´ ρai ¨ µi,tKT

“ Jxxi,yiy ` ρ ¨ CPRF.EvalpKi, tqKT

Therefore, when we compute the product
ś

iPrns pi, the part related to the CPRF all cancel

out, leaving us the term Jx,yKT where x :“ px1, . . . ,xnq.

10



2.1.3 Proof Roadmap

Table 2.1: MCFE: Sequence of hybrids, where ‹ denotes the most technical step to
be elaborate later. Here we show the vectors passed to the underlying IPE’s Enc and

KGen functions in each hybrid. Qkgen denotes the maximum number of KGen queries
made by the adversary. For conciseness, we write CPRFpKi, tq as a shorthand for

CPRF.EvalpKi, tq. Note that the ρ term is sampled fresh at random for each KGen query.

Hybrid Enc KGen assumption

Real1

´

x
p1q
i ,0,CPRFpKi, tq ` aiµi,t, µi,t, 0

¯ ´

y
p1q
i ,0, ρ,´ρai, 0

¯

Hyb0

´

x
p1q
i ,x

p0q
i ,CPRFpKi, tq ` aiµi,t, µi,t, 0

¯ ´

y
p1q
i ,0, ρ,´ρai, 0

¯

FH-IND of IPE

Hyb`
` P rQkgens

same as
Hyb0

first `:
´

0,y
p0q
i , ρ,´ρai, 0

¯

remaining:
´

y
p1q
i ,0, ρ,´ρai, 0

¯

explained
below ‹

Hyb˚
´

0,x
p0q
i ,CPRFpKi, tq ` aiµi,t, µi,t, 0

¯ ´

0,y
p0q
i , ρ,´ρai, 0

¯

FH-IND of IPE

Real0

´

x
p0q
i ,0,CPRFpKi, tq ` aiµi,t, µi,t, 0

¯ ´

y
p0q
i ,0, ρ,´ρai, 0

¯

FH-IND of IPE

To prove that our scheme satisfies function-hiding indistinguishability-based security, we need

to go through a sequence of hybrids as shown in Table Table 2.1. Note that Table Table 2.1

shows only how the challenger generates ciphertext and key components for an honest client

i P rns. For a corrupted client i, the security game stipulates that x
p0q
i “ x

p1q
i and y

p0q
i “ y

p1q
i ,

and thus the challenger simply runs the honest Enc or KGen algorithm as in the real world.

The steps where we apply the function-hiding indistinguishability security (denoted FH-

IND in Table Table 2.1) of the underlying IPE are relatively straightforward. The most

technical part in the proof is to argue that Hyb`´1 is computationally indistinguishable from

Hyb` for ` P rQkgens. To do this, we carry out yet another sequence of inner hybrids as shown

in Table Table 2.2. In this sequence of inner hybrids, the third step that relies on Decisional

Linear is the most technical one, and is proven in detail in Claim 5.2.2.

11



Table 2.2: MCFE: Inner hybrids to go from Hyb`´1 to Hyb`. The most technical
steps are the ones that rely on Decisional Linear (DLin), formally proven later in

Claim 5.2.2. ρ˚ is the randomness used in the `-th KGen query, and
y˚pbq :“ py

˚pbq
1 , . . . ,y

˚pbq
n q for b P t0, 1u denote the key vectors submitted in the `-th KGen

query.

Hybrid assumption

Hyb`´1 see Table Table 2.1

H`´1,1

Enc :
´

x
p1q
i ,x

p0q
i ,CPRFpKi, tq ` aiµi,t, µi,t,CPRFpKi, tq ¨ ρ

˚ ` xx
p1q
i ,y

˚p1q
i y

¯

KGen :

first `´ 1:
´

0m,y
p0q
i , ρ,´ρai, 0

¯

`-th: p0m, 0m, 0, 0, 1q

remaining:
´

y
p1q
i , 0m, ρ,´ρai, 0

¯

FH-IND
of
IPE

H`´1,2

Enc :
´

x
p1q
i ,x

p0q
i , Ri,t ` aiµi,t, µi,t, Ri,t ¨ ρ

˚ ` xx
p1q
i ,y

˚p1q
i y

¯

where
ř

iPHRi,t “ ´
ř

iPK CPRFpKi, tq

KGen : same as H`´1,1

correlated
pseudorand.

of CPRF

H`´1,3

Enc :
´

x
p1q
i ,x

p0q
i , Ri,t ` aiµi,t, µi,t, Ti,t ` xx

p1q
i ,y

˚p1q
i y

¯

where
ř

iPH Ti,t “ ´ρ
˚ ¨

ř

iPK CPRFpKi, tq

KGen : same as H`´1,1

DLin

H1`´1,3

Enc :
´

x
p1q
i ,x

p0q
i , Ri,t ` aiµi,t, µi,t, Ti,t ` xx

p0q
i ,y

˚p0q
i y

¯

where
ř

iPH Ti,t “ ´ρ
˚ ¨

ř

iPK CPRFpKi, tq

KGen : same as H`´1,1

identically
distributed

H1`´1,2

Enc :
´

x
p1q
i ,x

p0q
i , Ri,t ` aiµi,t, µi,t, Ri,t ¨ ρ

˚ ` xx
p0q
i ,y

˚p0q
i y

¯

where
ř

iPHRi,t “ ´
ř

iPK CPRFpKi, tq

KGen : same as H`´1,1

DLin

H1`´1,1

Enc :
´

x
p1q
i ,x

p0q
i ,CPRFpKi, tq ` aiµi,t, µi,t,CPRFpKi, tq ¨ ρ

˚ ` xx
p0q
i ,y

˚p0q
i y

¯

KGen : same as H`´1,1

correlated
pseudorand.

of CPRF

Hyb` see Table Table 2.1
FH-IND

of
IPE
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2.2 Function-Hiding Ad Hoc Multi-Iput Inner Product Encryption

2.2.1 Building Blocks

Our scheme uses a decentralized secure summation scheme, denoted DSum. In a DSum

scheme, each client i P rns generates their own public key - secret key pair pdpki, dskiq as

part of local setup. Then, a set U of clients agree to compute a sum of their inputs. To

achieve this, each client i P U encrypts a message xi associated with the set U and a label t

using their secret key and everyone else’s public key as cti Ð Encpdski, pxi,U , tq, tdpkjujPUq.

They publish their ciphertexts to a public bullentin board and if everyone’s ciphertexts for

the unique tuple pU , tq are available on the bulletin board, then, anyone can recover the sum

of the underlying messages as
ř

i xi “ Decpdpp, tctiuiPUq.

2.2.2 Our Construction

We sketch our construction below — a more formal presentation can be found in subsequent

technical sections. In our scheme the public parameters pp are just the public parameters of

the underlying IPE scheme and DSum scheme.

• USetup: during a user i’s setup phase, the user runs IPE.Setup to sample a secret

keys denoted imski. It also runs the user setup algorithm of the DSum, and obtain

pdpki, dskiq. In summary, each client’s master secret key is composed of the terms

pimski, dskiq, and public key is ppp, dpkiq.

• KGen: A user i can issue a functional key for the vector yi P Zmq associated with a

user set U and a label t as follows:

piski :“ IPE.KGenpimski, ryiq, dcti :“ DSum.Encpdski, pJriK,U , tq, tdpkiuiPUqq
where ryi “ pyi, 0

m, ri, 0q and ri
$
ÐZq is fresh randomness

• Enc: for a client i to encrypt a vector xi P Zmq , it outputs the following ciphertext:

IPE.Enc pimski, rxiq , where rxi “pxi, 0
m, 1, 0q

13



• Dec: to decrypt, simply use each iski to decrypt the ciphertext cti from the i-th

client and obtain a partial decryption pi; then, use DSum decryption to obtain JzK “

J
ř

i riK. Finally, compute JvKT “
ś

iPrns pi and output discrete log of pJvKT {JzKT q. Since

decryption requires computing discrete logarithm, the outcome of the inner-product

computation must lie within a polynomially-bounded space for the decryption to be

efficient.

To verify correctness, suppose that for a set U of users, tctiuiPU are honestly generated

ciphertexts for plaintext vectors txiuiPU , respectively. Further, suppose that tiski, dctiuiPU

are the functional keys for the vectors tyiuiPU , all generated for the same label t and set

U . Then, applying iski to cti gives the partial decryption result pi “ Jxxi,yiy ` riKT and

combining all the DSum ciphertexts dcti gives the mask JzK “ J
ř

iPU riK. Therefore, when

we compute the product JvKT “
ś

iPU pi, we get JvKT “ J
ř

iPUxxi,yiy `
ř

iPU riKT . Hence,

taking discrete log of pJvKT {JzKT q gives us the expected result.

Our construction borrows several ideas from existing works. We start with the observation

made in [ACF`20] that certain MIFE schemes are ad hoc friendly such as [AGRW17,

ACF`18]. In particular, the Setup algorithm of both of those MIFE schemes can be trivially

made to be run locally by each user. Their Enc algorithms are already local. Their KGen

algorithms are not local and require non-trivial efforts to be made so and that’s what we

try to achieve. [ACF`20] used non-interactive multi-party computation to execute the

MIFE KGen algorithm in a decentralized way. But, this approach inherently can’t be made

function-hiding secure, hence, we divert from this idea.

We take a step back and observe that in the MIFE schemes constructed by Abdalla et

al. [AGRW17,ACF`18], the KGen algorithm outputs two components, one of which is a set

of keys generated by running every user’s IPE KGen algorithms and the other component

captures a way to unmask the final output obtained by running IPE decryption for all parties

as part of MIFE decryption algorithm. We note that the first components can be computed

by every user locally and it is the second component whose computation needs efforts to

14



be made local. In the IND-secure MIFE scheme constructed by [ACF`18], this second

component comprises of
ř

ixui,yiy and it can’t be made function-hiding because it leaks

information about function inputs yi’s as pointed out by the authors. On the other hand, in

the IND-secure MIFE scheme constructed by [AGRW17], this second component comprises

of
ř

ixzi, ry, where zi are part of user secret keys and r is shared randomness. Thus, this is

not function-dependent and all we need to do is to decentralize this step. For starters, there is

no way to generate the shared randomness r in a non-interactive way. If we overlook the idea

of shared randomness and rather have each user generate randomness ri locally, then, this

breaks the security proof. In particular, now every user’s partial inner products are revealed.

Ideally, we would like a way where every user’s component masks xzi, riy are encrypted and

only the sum of the masks is revealed to the decrypter. DSum protocol provides exactly this

functionality and we employ it make the security proof work. Hence, in summary we follow

the blueprint of [AGRW17]’s MIFE scheme and make it ad hoc by using function-hiding IPE

and DSum primitives in a black box manner.

We emphasize that our construction is conceptually simpler. In [AGRW17], the mask

was of the form xzi, ry instead of just r because r is given out as part of the functional key in

plain and hence it can’t be used as a mask. We, on the other hand use a function-hiding IPE

as a starting point, so r is not revealed in plain and hence can directly be used for masking.

Further, towards our goal of making all the computation local, instead of computing shared

randomness r, every user will generate their own scalar random value ri and this is sufficient

for our security proof.
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2.2.3 Proof Roadmap

Table 2.3: AMIFE: Sequence of hybrids, where ‹ denotes the most technical step to
be elaborate later. Here we show the vectors passed to the underlying IPE’s Enc and

KGen functions as well as di’s passed to the underlying DSum’s Enc in each hybrid. Qkgen

denotes the maximum number of KGen queries made by the adversary. Note that the ri
terms are sampled fresh at random for each KGen query.

IPE.Enc IPE.KGen DSum.Enc

Hybrid rxi ryi d1 d2 . . . dn assumption

Real1

´

x
p1q
i ,0, 1, 0

¯ ´

y
p1q
i ,0, ri, 0

¯

r1 r2 . . . rn

Hyb˚
´

x
p1q
i ,0, 1, 0

¯ ´

y
p1q
i ,0, ri, 0

¯

ř

i ri 0 . . . 0 SEL-IND of DSum

Hyb0

´

x
p1q
i ,x

p0q
i , 1, 0

¯ ´

y
p1q
i ,0, ri, 0

¯

ř

i ri 0 . . . 0 FH-IND of IPE

Hyb`
` P rQkgens

same as
Hyb0

first `:
´

0,y
p0q
i , ri, 0

¯

remaining:
´

y
p1q
i ,0, ri, 0

¯

ř

i ri 0 . . . 0
explained
below ‹

Hyb#
´

0,x
p0q
i , 1, 0

¯ ´

0,y
p0q
i , ri, 0

¯

ř

i ri 0 . . . 0 FH-IND of IPE

Hyb˚˚
´

0,x
p0q
i , 1, 0

¯ ´

0,y
p0q
i , ri, 0

¯

r1 r2 . . . rn SEL-IND of DSum

Real0

´

x
p0q
i ,0, 1, 0

¯ ´

y
p0q
i ,0, ri, 0

¯

r1 r2 . . . rn FH-IND of IPE

To prove that our scheme satisfies function-hiding indistinguishability-based security, we

need to go through a sequence of hybrids as shown in Table Table 2.3. Interestingly, the

security hybrids blueprint is very similar to that for MCFE. Note that Table Table 2.3 shows

only how the challenger generates ciphertext and key components for an honest client i P rns.

For a corrupted client i, the security game stipulates that x
p0q
i “ x

p1q
i and y

p0q
i “ y

p1q
i , and

thus the challenger simply runs the honest Enc or KGen algorithm as in the real world.

The steps where we apply the function-hiding indistinguishability security (denoted FH-

IND in Table Table 2.3) of the underlying IPE and the indistinguisability security of the

underlying DSum are relatively straightforward. The most technical part in the proof is to
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Table 2.4: AMIFE: Inner hybrids to go from Hyb`´1 to Hyb`. r
˚
i is the randomness

used in the `-th KGen query, and y
˚pbq
i for b P t0, 1u and for i P U denote the key vectors

submitted in the `-th KGen query.

Hybrid assumption

Hyb`´1 see Table Table 2.3

H`´1,1

Enc :
´

x
p1q
i ,x

p0q
i , 1, r˚i ` xx

p1q
i ,y

˚p1q
i y

¯

KGen :

first `´ 1:
´

0m,y
p0q
i , ri, 0

¯

`-th: p0m, 0m, 0, 1q

remaining:
´

y
p1q
i , 0m, ri, 0

¯

FH-IND
of
IPE

H1`´1,1

Enc :
´

x
p1q
i ,x

p0q
i , 1, r˚i ` xx

p0q
i ,y

˚p0q
i y

¯

KGen : same as H`´1,1

independent
and identically

distributed

Hyb` see Table Table 2.1
FH-IND

of
IPE

argue that Hyb`´1 is computationally indistinguishable from Hyb` for ` P rQkgens. To do this,

we carry out yet another sequence of inner hybrids as shown in Table Table 2.4.
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3

Definitions

3.1 Multi-Client Inner Product Encryption

Henceforth, we use m to denote the number of coorindates encrypted by each client, and use

n to denote the number of clients. In a Multi-Client Inner-Product Functional Encryption

(MCIPE) scheme, in every time step, each client i P rns encrypts a vector xi P Zmq using its

private key eki. An authority holding a master secret key msk can generate a functional key

sky for a vector y P Zmnq “ py1,y2, . . . ,ynq where each yi P Zmq . One can now apply the

functional key sky to the collection of all n clients’ ciphertexts belonging to the same time

step, and an evaluation procedure gives the result xx,yy where x :“ px1, . . . ,xnq.

We use a standard notion of selective indistinguishability for multi-client inner-product

encryption [AGT21b]. In this standard definition, the time step t is generalized and encoded

as an arbitrary label, and only ciphertexts encrypted to the same label can be combined dur-

ing the decryption process. Mix-and-match among ciphertexts encrypted to different labels

should be prevented; however, mix-and-match among the same label is allowed. Formally,

an MCIPE scheme consists of the following possibly randomized algorithms:

• ppÐ Genp1λq: the parameter generation algorithm Gen takes in a security parameter λ

and chooses parameters pp — we will assume that pp contains a λ-bit long prime number
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q P N and the description of a suitable cyclic group G of prime order q.

• pmpk,msk, tekiuiPrnsq Ð Setupppp,m, nq: takes in the parameters q, G, m, and n, and

outputs a public key mpk, a master secret key msk, and n user secret keys needed for

encryption, denoted ek1, . . . , ekn, respectively. Without loss of generality, henceforth we

may assume that mpk encodes pp so we need not write the parameters pp explicitly below.

• sky Ð KGenpmpk,msk,yq: takes in the public key mpk, the master secret key msk, and

a vector y P Zmnq , and outputs a functional secret key sky.

• cti,t Ð Encpmpk, eki,xi, tq: takes in the public key mpk, a user secret key eki, a plaintext

xi P Zmq , and a label t P t0, 1u˚, outputs a ciphertext cti,t.

• v Ð Decpmpk, sky, tcti,tuiPrnsq: takes in the public key mpk, the functional secret key sky,

and a collection of ciphertexts tcti,tuiPrns, outputs a decrypted outcome v P Zq.

Correctness. For correctness, we require that for any λ P N, for any pp :“ pq, . . .q in the

support of Genp1λq, the following holds with probability 1 for any m,n P N: for any y P

Zmnq , and any x :“ px1, . . . ,xnq P Znq , and any t P t0, 1u˚: let pmpk,msk, tekiuiPrnsq Ð

Setupppp,m, nq, let sky Ð KGenpmpk,msk,yq, let cti,t Ð Encpmpk, eki,xi, tq for i P rns,

and let v Ð Decpmpk, sky, tcti,tuiPrnsuq, it must be that v “ xx,yy.

Function-hiding IND-security for MCIPE. We now define function-hiding security. Consider

the following experiment between an adversary A and a challenger C.

Experiment MCIPE-Exptbp1λq:

• Setup. Ap1λq outputs a set of corrupted parties K Ă rns, as well as the param-
eters m and n to the challenger C. The challenger C runs pp Ð Genp1λq, and
pmpk,msk, tekiuiPrnsq Ð Setupppp,m, nq; it gives mpk and tekiuiPK to A.

• Query. The adversary can make the following types of queries:

– KGen queries. Whenever the adversary A makes a KGen query with two
vectors yp0q P Zmnq and yp1q P Zmnq : C calls skypbq :“ KGenpmpk,msk,ypbqq and
returns skypbq to A;
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– Enc queries. Whenever A makes an Enc query with the tuple pi, t,x
p0q
i,t ,x

p1q
i,t q,

the challenger C calls cti,t :“ Encpmpk, eki,x
pbq
i,t , tq and returns cti,t to A;

An adversary A is said to be admissible iff the following hold with probability 1 where

H :“ rnszK denotes the set of honest clients:

1. A always makes all KGen queries ahead of any Enc query;

2. for every label t P t0, 1u˚, either for every i P H, A has made at least one Enc query of

the form pi, t, , q, or A made no Enc query of the form pi, t, , q for any i P H.

3. if A ever makes an Enc query with the tuple pi, t,x
p0q
i,t ,x

p1q
i,t q for some corrupt i P K, it

must be that x
p0q
i,t “ x

p1q
i,t ;

4. for any pair pyp0q,yp1qq submitted in a KGen query where for b P t0, 1u, ypbq :“ py
pbq
1 , . . .,

y
pbq
n q P t0, 1umn, it must be that

(a) for i P K, y
p0q
i “ y

p1q
i .

(b) for any collection tx
p0q
i,t ,x

p1q
i,t uiPH pertaining to the same t where each pair px

p0q
i,t ,x

p1q
i,t q for

i P H has been submitted in an Enc query of the form pi, t,x
p0q
i,t ,x

p1q
i,t q,

A

px
p0q
i,t qiPH, py

p0q
i qiPH

E

“

A

px
p1q
i,t qiPH, py

p1q
i qiPH

E

(3.1)

Definition 1 (Function-hiding IND-security of MCIPE). We say that an MCIPE scheme

is selectively function-hiding IND-secure iff for any non-uniform probabilistic polynomial-

time (PPT) admissible adversary A, its views in MCIPE-Expt0p1λq and MCIPE-Expt1p1λq are

computationally indistinguishable.

Note that the above is a selective, static notion, since the adversary must commit to the

corrupted set of clients ahead of time, and moreover, it must make all KGen queries ahead

of Enc queries.

Remark 1. Note that the second admissibility rule requires that if one ciphertext is queried

for a label t, then all ciphertexts for honest clients must be queried for this label. Jumping
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ahead, this rule is necessary later to show that the hybrids H`,3 and H1`,3 are identically

distributed. If one further restricts the adversary to be “strongly selective”, i.e., the adversary

must submit submit all Enc and KGen queries in one shot, then the second admissibility rule

can be removed using standard techniques by wrapping the ciphertexts with an additional

layer of all-or-nothing encryption [CDSG`20]. This technique was shown in the elegant work

of Chotard [CDSG`20], but their work is not function hiding. For completeness, we explicitly

present this transformation in Appendix B and prove that it works for function-hiding MCIPE

too.

3.2 Ad Hoc Multi-Input Inner Product Encryption

Ad Hoc Multi-Input Inner Product Encryption. Ad Hoc Multi-Input Inner Product Encryption

(aMIIPE) is a decentralized version of Multi-Input Functional Encryption for computing inner

products. In aMIIPE, any dynamically formed set of users can evaluate the inner product

of a key vector with their joint plaintext vector. Therefore, our formulation of aMIIPE is

actually more flexible than the original formulation by Agrawal et al. [ACF`20], since in

their formulation, all users must participate key components to approve an evaluation.

Without loss of generality, we may assume that rns denotes the space of user identities

where n P N and m denotes the number of coordinates encrypted by each user. In an

Ad Hoc Multi-Input Inner-Product Encryption (aMIIPE) scheme, a user i encrypts a vector

xi P t0, 1u
m using its master secret key mski. At any point of time, a user i can generate a

functional key ski for a vector yi P t0, 1u
m; the functional key is also tied to a set of users

Ui that contains i, and a label ti. The user can publish the functional key ski to a public

bulletin board. Note that ski contains the information Ui and ti in plain but does not leak

information about yi. If all the users belonging to the set Ui publish their functional keys for

the same label ti, then, anyone can apply this set of functional keys to any set of ciphertexts

cti’s by the same set of users to obtain the sum of their respective inner products
ř

jPUi

xxj,yjy.

Formally, let K, and M denote a key space, and a message space, respectively. Each
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key object k “ py,UK , tq P K consists of a private key component y P Zmq , a set of users

UK Ď rns, and a label t P T where T denotes a label space. is a vector denoted x P Zmq , and

we use M to denote the message space. Let f :
Ť

iPNprnsˆKqiˆ
Ť

iPNprnsˆMqi Ñ Zmq be a

function. An Ad Hoc Multi-Input Inner Product Encryption (aMIIPE) scheme for f consists

of the following, possibly randomized algorithms:

• ppÐ Genp1λ, n,mq: takes a security parameter 1λ, the space size of user identities n P N,

the per-user message and key length m P N, and outputs the public parameters pp;

• ppki,mskiq Ð USetuppppq: takes in the public parameters pp, and outputs a public key

and master secret key pair for a user, denoted pki and mski, respectively;

• ski Ð KGenpmski, k “ pyi,Ui, tiq, tpkjujPUi
q: takes a user’s master secret key mski, a key

object k “ pyi,Ui, tiq P K, a set of public keys tpkjujPUi
for users in Ui, and outputs a

secret key ski.

• cti Ð Encpmski,xiq: takes in a user’s master secret key mski, and a message xi PM, and

outputs a ciphertext cti.

• v Ð DecptskiuiPUK
, tctiuiPUK

q: takes in a set of secret keys tskiuiPUK
, and a set of cipher-

texts tctiuiPUK
, and outputs a decrypted value v; if decryption fails, output v “ K.

The aMIIPE function f is defined as follows:

f pti, pyi,Ui, tiquiPUK
, ti,xiuiPUK

q “

#

ř

iPUK
xxi,yiy if the condition (*) below is satisfied

K otherwise

Condition (*) is defined as: there exists label t P T such that @i P UK : ti “ t, and moreover,

Ui “ UK .

In other words, fix some U , t: given a collection of ciphertexts from users in U , and

given a collection of secret keys from users in U all tagged with pU , tq, then an evaluator can

compute the inner-product
ř

iPUxxi,yiy.
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Correctness. We say that an aMIIPE scheme satisfies correctness, iff it satisfies the following

condition. For all λ, n P N,m P N, for any UK Ď rns whose size is denoted |UK | “ s, any

x1, . . . ,xs, any y1, . . . ,ys, any U1, . . . ,Us, and any t1, . . . , ts chosen from the appropriate

domains, the following holds with probability 1:

v “ f pti, pyi,Ui, tiquiPUK
, ti,xiuiPUK

q :

ppÐ Genp1λ, n,mq
@i P rns : ppki,mskiq Ð USetuppppq
@i P UK : cti Ð Encpmski,xiq
@i P UK : ski Ð KGenpmski, pyi,Ui, tiq, tpkjujPUi

q

v “ DecptskiuiPUK
, tctiuiPUK

q

Function-hiding IND-security of aMIIPE. Consider the following experiment aMIIPE-Exptbp1λq:

Experiment aMIIPE-Exptbp1λq:

• Setup. Ap1λq outputs a set of parties to corrupt K Ă rns. The challenger C runs
pp Ð Genp1λ, n,mq, and for i P rns, it runs ppki,mskiq Ð USetuppppq. It returns
tpkiuiPrns as well as tmskiuiPK to A.

• Query. The adversary can make the following types of queries:

– KGen queries. Whenever A makes a KGen query of the form pi,yp0q,yp1q,UK , tq,
the challenger C calls sk Ð KGenpmski, py

pbq,UK , tq, tpkjujPUK
q, and returns sk to

A.

– Enc queries. Whenever A makes an Enc query with the tuple pi,xp0q,xp1qq, C calls
ctÐ Encpmski,x

pbqq, and returns ct to A;

An adversary A is said to be admissible iff the following hold with probability 1:

• A always makes all KGen queries ahead of any Enc query; moreover, all KGen queries

tagged with the same pUK , tq pair must be made all at once;

• if A ever makes an Enc query with the tuple pi,x
p0q
i ,x

p1q
i q for some corrupt i P K, it must

be that x
p0q
i “ x

p1q
i ;

• if A ever makes an KGen query with the tuple pi,y
p0q
i ,y

p1q
i ,UK , tq for some corrupt i P K,

it must be that y
p0q
i “ y

p1q
i ;

• there are no tuples ti,y
p0q
i ,y

p1q
i ,Ui, tiuiPUK

, and ti,x
p0q
i ,x

p1q
i uiPUK

, such that
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– for all i P UK , the adversary A has made a KGen query of the form pi,y
p0q
i ,y

p1q
i ,Ui, tiq,

– for all i P UK , the adversary A has made an Enc query of the form pi,x
p0q
i ,x

p1q
i q,

– however, fpti, py
p0q
i ,UK , tquiPUK

, ti,x
p0q
i uiPUK

q ‰ fpti, py
p1q
i ,UK , tquiPUK

, ti,x
p1q
i uiPUK

q.

Definition 2 (Selective function-hiding IND-security of aMIIPE). We say that an aMIIPE

scheme satisfies selective, function-hiding IND-security iff for any non-uniform probabilistic

polynomial-time (PPT) admissible adversary A, its views in aMIIPE-Expt0p1λq and aMIIPE-Expt1p1λq

are computationally indistinguishable.
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4

Preliminaries

4.1 Bilinear Groups

Throughout, we use λ to denote the security parameter. Boldface letters such as x denote

vectors, and normal-font letters such as x to denote scalars. Given two vectors x P Z`q and

y P Z`q each of dimension `, we use xx,yy P Zq to denote their inner-product modulo q.

Notation for group elements. Given a cyclic group G of prime order q, and a generator g P G,

we use JxK to denote gx P G where x P Zq. Given a vector x :“ px1, x2, . . . , x`q P Z`q, the

notation JxK denotes the vector of group elements pgx1 , gx2 , . . . , gx`q.

We will employ a bilinear group pG,GT q of prime order q with a pairing operator e :

G ˆG Ñ GT , and a random generator g P G. In this case, the notation JxK means gx, and

the notation JxKT means epg, gqx. The notations for vectors are similarly defined.

Implicit notation for group operations. If a party knows JxK P G and y P Zq, it is able to

efficiently compute JxyK :“ JxKy. Therefore, without risk of ambiguity, often when we write

“compute JxyK” in an algorithm description, we mean compute the group exponentiation

JxKy or JyKx. The same rule also extends to vectors as well as bilinear groups.
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4.2 The Decisional Linear Assumption

The Decisional Linear assumption. We say that the Decisional Linear assumption holds for

the group generator G, iff the following two experiments are computationally indistinguish-

able:

1. Sample pp :“ pq,G, gq $
ÐGp1κq where G is a cyclic group of order q with a random generator

g “ J1K. Sample random β, γ, u, v
$
ÐZq. Output the tuple ppp, J1K, JβK, JγK, JuK, JβvK, Jγpu` vqKq.

2. Sample pp :“ pq,G, gq $
ÐGp1κq where G is a cyclic group of order q with a random generator

g “ J1K. Sample random β, γ, u, v, z
$
ÐZq. Output the tuple ppp, J1K, JβK, JγK, JuK, JβvK, JzKq.

Without risk of ambiguity, we often say that the Decisional Linear assumption holds for the

group G where G is the group sampled by the group generator G.

The Vector Decisional Linear assumption. For convenience, the operational version of the

Decisional Linear assumption we use is in fact a vectorized version, which is implied by the

aforementioned standard Decisional Linear assumption through a standard hybrid argument.

The Vector Decisional Linear assumption [SW21] posits that the following two distributions

are computationally indistinguishable:

1. Sample pp :“ pq,G, gq $
ÐGp1κq where G is a cyclic group of order q with a random generator

g “ J1K. Sample random β, γ
$
ÐZq, and random u,v

$
ÐZnq . Output the tuple ppp, J1K, JβK,

JγK, JuK, JβvK, Jγpu` vqKq.

2. Sample pp :“ pq,G, gq $
ÐGp1κq where G is a cyclic group of order q with a random gen-

erator g “ J1K. Sample random β, γ
$
ÐZq, and random u,v, z

$
ÐZnq . Output the tuple

ppp, J1K, JβK, JγK, JuK, JβvK, JzKq.

Fact 4.2.1 ( [SW21]). Assume that the Decisional Linear assumption holds in G, then the

above Vector Decisional Linear assumption holds in G as well.
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4.3 The Decisional Bilinear Diffie-Hellman Assumption

The Decisional Bilinear Diffie-Hellman Assumption (DBDH). We say that the Decisional Bilin-

ear Diffie-Hellman Assumption holds in group G, which is part of a bilinear group pG,GT q,

if the following two experiments are computationally indistinguishable:

1. Sample g “ J1K $
ÐG where G is a cyclic group of order q. Sample random a, b, c

$
ÐZq.

Output the tuple pJ1K, JaK, JbK, JcK, JabcKT q.

2. Sample g “ J1K $
ÐG where G is a cyclic group of order q. Sample random a, b, c, z

$
ÐZq.

Output the tuple pJ1K, JaK, JbK, JcK, JzKT q.

The Q-fold Decisional Bilinear Diffie-Hellman Assumption. We say that the Q-fold Decisional

Bilinear Diffie-Hellman Assumption holds in group G, which is part of a bilinear group

pG,GT q, if the following two experiments are computationally indistinguishable:

1. Sample g “ J1K $
ÐG where G is a cyclic group of order q. Sample random a, b, c1, ..., cQ

$
ÐZq.

Output the tuple pJ1K, JaK, JbK, JcK, tJabciKT uiPQq.

2. Sample g “ J1K $
ÐG where G is a cyclic group of order q. Sample random a, b, c, z1, ..., zQ

$
ÐZq.

Output the tuple pJ1K, JaK, JbK, JcK, tJziKT uiPQq.

4.4 Function-Hiding (Single-Input) Inner Product Encryption

We will need a single-input inner-product encryption scheme — henceforth we call this

building block Inner Production Encryption (IPE). IPE can be viewed as a special case of

multi-client inner product encryption when n “ 1. However, we will need our underlying

IPE to satisfy a few nice properties, including the fact that Enc and KGen should still work

when taking in the group encoding of the plaintext or key vector; moreover, we want that

the scheme computes the “inner-product in the exponent”.

Formally, the special IPE scheme we need consists of the following possibly randomized

algorithms:
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• pp Ð Genp1λq: takes in a security parameter λ and samples public parameters pp. We

will assume that pp contains the description of a bilinear group pG,GT q of prime order q,

a random generator g P G, and the description of the pairing operator e : GˆGÑ GT .

• imsk Ð Setupppp,mq: takes in the public parameters pp and the dimension m of the

plaintext vector, outputs a secret key imsk.

• sky Ð KGenpimsk, JyKq: takes in the secret key imsk, and a vector of group elements

JyK P Gm which represents the group encoding of the vector y P Zmq , outputs a functional

(secret) key sky.

• ctÐ Encpimsk, JxKq: takes in the secret key imsk, a plaintext vector JxK P Gm represented

in group encoding, and outputs a ciphertext ct.

• JvKT Ð Decpsky, ctq: takes in the functional key sky and a ciphertext ct, and outputs a

decrypted outcome JvKT .

Correctness. Correctness requires that for any λ,m P N,x,y P Zmq , the following holds

with probability 1: let pp Ð Genp1λq, imsk Ð Setupppp,mq, sky Ð KGenpimsk, JyKq,

ctÐ Encpimsk, JxKq, JvKT Ð Decpsky, ctq, then, it must be that v :“ xx,yy.

Function-hiding security. Consider the following experiment IPE-Exptbp1λq between an ad-

versary A and a challenger C:

Experiment IPE-Exptbp1λq:

• Setup. The challenger C runs pp Ð Genp1λq, and imsk Ð Setupppp,mq, and gives
pp to A.

• Query. A makes the following types of queries to C:

– KGen queries: the adversary A submits pyp0q,yp1qq; the challenger C computes
skypbq Ð KGenpmsk, JypbqKq and returns to A the resulting skypbq .

– Enc queries: the adversary A submits pxp0q,xp1qq; the challenger C computes ctÐ
Encpmpk, JxpbqKq, and returns ct to A.

An adversary A is said to be admissible iff the following holds with probability 1:
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• all KGen queries must be made before any Enc query; and

• for any pxp0q,xp1qq tuple submitted in an Enc query, for any pyp0q,yp1qq tuple submitted

in a KGen query, it must be that xxp0q,yp0qy “ xxp1q,yp1qy.

Definition 3 (Function-hiding IND-security of IPE). We say that the IPE scheme satisfies

selective, function-hiding IND-security, iff for any non-uniform probabilistic polynomial-time

(PPT) admissible adversary, its views in IPE-Expt0 and IPE-Expt1 are computationally indis-

tinguishable.

Prior works [Wee16,ACF`18,SW21] have shown how to construct a function-hiding IPE

scheme from the standard Decisional Linear assumption in bilinear groups. The idea is

to first construct an IPE scheme without function privacy from Decisional Linear [Wee16,

ACF`18, SW21] and then apply a function privacy upgrade [Lin17, Wee16, ACF`18, SW21]

to obtain function hiding. The resulting constructions indeed satisfy the aforementioned nice

properties that we need.

4.5 Correlated Pseudorandom Function

A correlated pseudorandom function family consists of the following randomized algorithms:

• pK1, K2, . . . , Knq Ð Genp1λ, n, qq: takes a security parameter 1λ and the number of users

n, some prime q, and outputs the user secret key Ki for each i P rns.

• v Ð EvalpKi, xq: given a user secret key Ki and an input x P t0, 1uλ, output an evaluation

result v P Zq.

Correctness. For correctness, we require that for any λ P N, any pK1, . . . , Knq in the support

of Genp1λq, any input x P t0, 1uλ, the following holds:

ÿ

iPrns

CPRF.EvalpKi, xq “ 0 mod q
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Correlated pseudorandomness. We require that for any non-uniform PPT adversary A who

is allowed corrupt f ď n ´ 2 users and obtain their user secret keys, for any subset U of

at most n ´ f ´ 1 honest users, for any input x, the evaluations tCPRF.EvalpKi, xquiPU

are computationally indistinguishable from random values, as long as the adversary has not

made a query on the input x.

More formally, correlated pseudorandomness is defined as below. Consider a game de-

noted CPRF-Exptbp1λ, n, qq between A and a challenger C, parametrized by a bit b P t0, 1u.

• Setup. A submits a set of corrupt nodes K Ă rns of size at most n´2. Henceforth, let

H :“ rnszK. Now, C runs the honest pK1, . . . , Knq :“ CPRF.Genp1λ, n, qq algorithm,

and gives tKiuiPK to A.

• Queries. A can adaptively make queries: for each query, A submits an input x. If

b “ 0, the challenger C chooses random tviuiPH
$
ÐZ|H|q subject to the condition that

ř

iPH vi `
ř

jPK CPRF.EvalpKj, xq “ 0, and returns tviuiPH to A. Else if b “ 1, the

challenger gives tCPRF.EvalpKi, xquiPH to A.

We say that a correlated pseudorandom function family CPRF satisfies correlated pseudo-

randomness, iff for any n and q, any non-uniform PPT adversary A’s views in CPRF-Expt0p1λ, n, qq

and CPRF-Expt1p1λ, n, qq are computationally indistinguishable.

Construction. Several prior works [BIK`17,ABG19,SW21] showed how to construct a cor-

related pseudorandom function from a standard pseudorandom function (PRF). Without

loss of generality, we may assume that PRF’s output range is r0, q ´ 1s. During the setup

phase denoted by Gen, sample random PRF keys ki,j for all i ă j, and let kj,i “ ki,j. Party

i’s secret key Ki is defined to be the set tki,jujPrns,j‰i. The evaluation function EvalpKi, xq

is defined as follows:

EvalpKi, xq “
ÿ

jPrns,j‰i

p´1qjăi ¨ PRFpki,j, xq mod q
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Prior works [BIK`17,ABG19,SW21] proved that the above CPRF construction satisfies

correctness and correlated pseudorandomness, as long as the underlying PRF is secure.

4.6 Decentralized Secure Summation (in the Exponent)

A decentralized secure summation (in the exponent) (DSum) scheme, first formulated by

Chotard et al. [CDSG`20]. consists of the following possibly randomized algorithms:

• dppÐ Genp1λ,Gq: takes in a security parameter λ, the description of a cyclic group G1

of prime order, and samples and outputs public parameters dpp.

• pdpki, dskiq Ð USetuppdppq: each client i runs the USetup algorithm, which takes in

the public parameters dpp, and outputs a public and secret key pair denoted dpki and

dski, respectively.

• cti Ð Encpdski, pJxK,U , tq, tdpkjujPUq: given the secret key dski, an element JxK P G, a

label t, a set of clients U Ď rns and their respective public keys tdpkjujPU , outputs a

ciphertext cti; we may assume that cti is always tagged with t and U .

• JvK Ð Decpdpp, tctiuiPUq: given the public parameters dpp, and a set of ciphertexts

tctiuiPU tagged with the labels ti and sets Ui, output a decrypted value JvK “ fpti, pJxKi,Ui, tiquiPUq.

The DSum function f is defined as follows:

fpti, pJxKi,Ui, tiquiPUq “

$

&

%

J
ř

iPU
xiK if the condition (*) below is satisfied

K otherwise

Condition (*) is defined as: there exists label t such that @i P U : ti “ t, and moreover,

Ui “ U .

In other words, fix some U , t: given a collection of ciphertexts from users in U all tagged

with pU , tq, then an evaluator can compute the product J
ř

iPU
xiK.

1 Group G here is same as G of the bilinear groups pG,GT q used in the aMIIPE construction later.
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Correctness. For correctness, we require that decryption correctly outputs the product (i.e.,

summation in the exponent) of the encrypted values, as long as the Dec algorithm is given

a collection of ciphertexts from every client in the specified set U , and moreover, all cipher-

texts must be encrypted to the specified t and U . More formally, the following holds with

probability 1:

JvK “ f pti, pJxKi,Ui, tiquiPUq :

ppÐ Genp1λ,Gq
@i P U : ppki,mskiq Ð USetuppppq
@i P U : cti Ð Encpdski, pJxK,U , tq, tdpkjujPUq
JvK “ Decpdpp, tctiuiPUq

Security. We now define the security requirement for DSum. Roughly speaking, we want

that if all ciphertexts from everyone in U has been collected and all ciphertexts are encrypted

to the same pU , tq pair, then, the decrypter can learn only the product of the messages

encrypted. If not all ciphertexts from everyone in U have been collected, the decrypter

learns nothing. More formally, consider the following security experiment.

Experiment DSum-Exptbp1λq:

• Setup. Ap1λq outputs a set of parties to corrupt K Ă rns. The challenger C runs
dpp Ð Genp1λ,Gq, and for i P rns, it runs pdpki, dskiq Ð USetuppdppq. It returns
tdpkiuiPrns as well as tdskiuiPK to A.

• Query. The adversary can make Enc queries of the following form: for each Enc
query,

– the adversary submits a set U Ď rns, a label t, a client i P U , and a pair of messages
pxp0q, xp1qq,

– the challenger C calls ctÐ Encpdski, px
pbq,U , tq, tdpkjujPUq, and returns ct to A.

In the above experiment, if for some pU , tq pair, the adversary A has submitted an

encryption query for every i P UzK pertaining to the pair pU , tq, then we say that pU , tq

is complete. Else, the pair pU , tq is said to be incomplete. We say that the adversary A is

admissible iff the following conditions hold:

• For every Enc query submitted for some corrupt i P K, let pxp0q, xp1qq be the two plaintext

messages submitted, then, it must be that xp0q “ xp1q.
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• For every complete pair pU , tq, let px
p0q
i , x

p1q
i q be the pair of messages submitted in an Enc

query for i P U and pertaining to the pair pU , tq, then, it must be that
ś

iPUzK x
p0q
i “

ś

iPUzK x
p1q
i .

We say that a DSum scheme is IND-secure, iff for every non-uniform PPT admissible

adversary, its views in DSum-Expt0p1λq and DSum-Expt1p1λq are computationally indistin-

guishable. We say that a DSum scheme is selective-IND-secure, if in the above game, the

adversary sends all the encryption queries at once.
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5

Function-Hiding Multi-Client Inner-Product Encryption

In this section, we give our detailed construction of function-hiding multi-client inner-product

encryption scheme and its formal proof.

5.1 Detailed Construction

Let IPE :“ pGen,Setup,KGen,Enc,Decq denote a function-hiding inner-product encryp-

tion scheme, and let CPRF :“ pGen,Evalq denote a correlated pseudorandom function.

Function-hiding, multi-client inner-product encryption

• Genp1λq: let ppÐ IPE.Genp1λq, and output pp.

• Setupppp,m, nq:

– let pK1, . . . , Knq :“ CPRF.Genp1λ, n, qq;

– for i P rns: let imski Ð IPE.Setupppp, 2m` 3q, and ai
$
ÐZq;

– output
mpk :“ pp, msk :“ timski, aiuiPrns, and

teki :“ pimski, Ki, aiquiPrns

• KGenpmpk,msk,yq:

– sample ρ
$
ÐZq;

– let ryi “ pyi, 0
m, ρ,´ρai, 0q;

– let iski Ð IPE.KGenpimski, JryKiq, and output sky :“ tiskiuiPrns.
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• Encpmpk, eki,xi, tq:

– sample µi,t
$
ÐZq if µi,t has not been sampled before;

– let rxi “ pxi, 0
m,CPRF.EvalpKi, tq ` aiµi,t, µi,t, 0q;

– call ctÐ IPE.Encpimski, JrxiKq, and output ct.

• Decpmpk, sky, tcti,tuiPrnsq: let JvKT :“
ś

iPrns IPE.Decpiski, ctiq, and output v :“ logpJvKT q.

Asymptotical efficiency. We can instantiate the function-hiding IPE using the scheme de-

scribed in earlier works [Wee16,ACF`18,SW21], based on the Decisional Linear assumption.

For the underlying IPE scheme, the ciphertext contains Opmq group elements where m is the

length of the vector being encrypted. Similarly, each functional key has only Opmq group

elements too. The public parameters contain only the group description.

In our MCIPE construction, to encrypt a length-m vector, each client’s ciphertext has

only Opmq group elements. A functional key for a length pn ¨ mq-vector has size Opn ¨ mq

group elements. Each client’s secret key has size Opnq where the big-O hides terms related

to the security parameter. The public parameters contain only the group description.

Theorem 5.1.1 (Restatement of Theorem 1.1.1). Suppose that the Decisional Linear as-

sumption holds in G, IPE satisfies selective, function-hiding IND-security (see Definition 3),

and moreover, CPRF satisfies correlated pseudorandomness. Then, the above MCIPE scheme

satisfies selective function-hiding IND-security.

Proof. The proof is presented next in Section 5.2

5.2 Proof of Theorem 5.1.1

We consider a sequence of hybrid experiments.

Experiment MCIPE-Expt1. This is the real-world experiment, parametrized by b “ 1. In

the experiment MCIPE-Expt1, the challenger C answers Enc and KGen queries using the

following vectors:

rxi “
´

x
p1q
i , 0m,CPRF.EvalpKi, tq ` aiµi,t, µi,t, 0

¯

, ryi “
´

y
p1q
i , 0m, ρ,´ρai, 0

¯
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where ρ is freshly chosen for every KGen query.

Experiment Hyb0. Same as MCIPE-Exptb except that for any honest i P H, the challenger C

answers Enc queries using

rxi “
´

x
p1q
i ,x

p0q
i ,CPRF.EvalpKi, tq ` aiµi,t, µi,t, 0

¯

Since this modification preserves the inner products xrxi, ryiy for any pair of encryption

and key vectors queried, and for any i P H, Hyb0 is computationally indistinguishable from

MCIPE-Expt1 due to the function-hiding IND-security of the IPE scheme.

Experiment Hyb`. We next define a sequence of hybrid experiments Hyb` where ` P rQkgens

where Qkgen denotes an upper bound the number of KGen queries made by A. In Hyb`,

for the first ` KGen queries, the challenger C uses ryi “
´

0m,y
p0q
i , ρ,´ρai, 0

¯

for any honest

i P H, and uses ryi “
´

y
p1q
i , 0m, ρ,´ρai, 0

¯

for any corrupt i P K. For the remaining Qkgen´ `

number of KGen queries, C uses ryi “
´

y
p1q
i , 0m, ρ,´ρai, 0

¯

for all i P rns.

In Lemma 5.2.1, we prove that Hyb`´1 is computationally indistinguishable from Hyb` for

` P rQkgens.

Experiment Hyb˚. The challenger C answers Enc and KGen queries using the following

vectors for any honest i P H:

rxi “
´

0m,x
p0q
i ,CPRF.EvalpKi, tq ` aiµi,t, µi,t, 0

¯

, ryi “
´

0m,y
p0q
i , ρ,´ρai, 0

¯

For corrupt i P K, the challenger C still uses:

rxi “
´

x
p1q
i , 0m,CPRF.EvalpKi, tq ` aiµi,t, µi,t, 0

¯

, ryi “
´

y
p1q
i , 0m, ρ,´ρai, 0

¯

Observe that HybQkgen
and Hyb˚ are almost identical except that the first m coordinates in rxi

are replaced with 0m for i P H. Since this modification preserves the inner products xrxi, ryiy
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for any pair of encryption and key vectors queried, and for any i P H, Hyb˚ is computationally

indistinguishable from HybQkgen
due to the function-hiding IND-security of the IPE scheme.

Finally, observe that Hyb˚ is computationally indistinguishable from MCIPE-Expt0 since

for honest i P H, the inner-product xrxi, ryiy is preserved for any pair of encryption and key

vectors queried; and for corrupt i P K, recall that our admissibility stipulates that x
p0q
i “ x

p1q
i

and y
p0q
i “ y

p1q
i , and thus it makes no difference whether x

p0q
i ,y

p0q
i is used or whether x

p1q
i ,y

p1q
i

is used by C.

Therefore, to complete the proof of Theorem 5.1.1, it suffices to prove the following

lemma, which shows the computational indistinguishability of Hyb`´1 and Hyb`.

Lemma 5.2.1. Suppose that the Decisional Linear assumption holds in G, IPE satisfies

function-hiding IND-security, and moreover, CPRF satisfies correlated pseudorandomness.

Then, Hyb`´1 is computationally indistinguishable from Hyb` for any ` P rQkgens.

Proof. We consider a sequence of hybrid experiments.

Experiment H`´1,1. In experiment H`´1,1, for any honest i P H, the challenger C uses the

following vectors to answer the Enc and KGen queries where ρ˚
$
ÐZq, and we use y˚p0q,

y˚p1q to denote the key vectors submitted during the `-th KGen query:

rxi “
´

x
p1q
i ,x

p0q
i ,CPRF.EvalpKi, tq ` aiµi,t, µi,t,CPRF.EvalpKi, tq ¨ ρ

˚
` xx

p1q
i ,y

˚p1q
i y

¯

,

ryi “

$

’

’

&

’

’

%

´

0m,y
p0q
i , ρ,´ρai, 0

¯

first `´ 1 KGen queries

p0m, 0m, 0, 0, 1q `-th KGen query
´

y
p1q
i , 0m, ρ,´ρai, 0

¯

remaining Qkgen ´ ` KGen queries

In the above, ρ is freshly chosen for every KGen query, and ρ˚ corresponds to the randomness

chosen for the challenge KGen query, i.e., the `-th KGen query.

Observe that H`´1,1 is almost identical to Hyb`´1 except for the above modifications high-

lighted in blue. Since these modification preserves the inner products xrxi, ryiy for any pair of
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encryption and key vectors queried, and for any i P H, H`´1,1 and Hyb`´1 are computationally

indistinguishable due to the function-hiding IND-security of the IPE scheme.

Experiment H`´1,2. Almost identical to H`´1,1, except that for each t label that appears

first in an Enc query, the challenger C chooses tRi,tuiPH at random from Zq subject to
ř

iPHRi,t “ ´
ř

iPK CPRF.EvalpKi, tq. For honest i P H, the challenger C uses the following

vector to answer Enc queries:

rxi “
´

x
p1q
i ,x

p0q
i , Ri,t ` aiµi,t, µi,t, Ri,t ¨ ρ

˚
` xx

p1q
i ,y

˚p1q
i y

¯

,

Experiment H`´1,2 is computationally indistinguishable from H`´1,1 due to the correlated

pseudorandomness of CPRF.

Observe that in this hybrid, the challenger needs to know challenge key vector y˚p1q when

answering Enc queries, and this is why our proof technique works only for selective security,

where the A must make all KGen queries ahead of any Enc query.

Experiment H`´1,3. Almost identical to H`´1,2, except that the challenger C chooses random

tTi,tuiPH subject to
ř

iPH Ti,t “ ´ρ
˚ ¨

ř

iPK CPRFpKi, tq, and uses the following vector in any

Enc query for an honest i P H:

rxi “
´

x
p1q
i ,x

p0q
i , Ri,t ` aiµi,t, µi,t, Ti,t ` xx

p1q
i ,y

˚p1q
i y

¯

Claim 5.2.2. Suppose that the Decisional Linear assumption holds in G. Then, H`´1,3 is

computationally indistinguishable from H`´1,2.

Proof. We will consider a sequence of hybrid experiments over the set of honest clients.

Henceforth let d be the number of honest clients, and let H :“ ti1, i2, . . . , idu Ď rns denote

the set of honest clients. We define the hybrid Gj as follows where j P rd´ 1s Y t0u:

• If i is among the first j honest clients, then the challenger C chooses rTi,t at random;

• If i is not among the first j honest clients and i ‰ id, then, the challenger C chooses

rTi,t “ Ri,t ¨ ρ
˚;
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• For the last honest client i “ id, the challenger C chooses rTi,t such that
ř

iPH
rTi,t “

´
ř

iPK CPRF.EvalpKi, tq.

The challenger uses the following vector when answering Enc queries for any honest i P H:

rxi “
´

x
p1q
i ,x

p0q
i , Ri,t ` aiµi,t, µi,t, rTi,t ` xx

p1q
i ,y

˚p1q
i y

¯

(5.1)

Observe that G0 is the same as H`´1,2, and Gd´1 is the same as H`´1,3. Therefore, to prove

Claim 5.2.2, it suffices to prove that any two adjacent hybrids Gj and Gj`1 are computation-

ally indistinguishable for ` P t0, 1, . . . , d´ 2u. Below, we prove that if the Decisional Linear

assumption holds in G, then indeed Gj and Gj`1 are computationally indistinguishable for

` P t0, 1, . . . , d´ 2u.

Suppose there is an efficient adversary A that can distinguish Gj and Gj`1 with non-

negligible probability, we show how to construct an efficient reduction B that can break the

Decisional Linear assumption. Let Qenc denote the maximum number of labels t submitted

during Enc queries. B obtains an instance pJ1K, JβK, JγK, JuK, JβvK, JzKq from a Vector

Decisional Linear challenger (see Section 4.2), where u,v, z P ZQenc
q and β, γ P Zq. B’s

task is to distinguish whether JzK “ Jγpu` vqK or random. B will now interact with A and

embed this Decisional Linear instance in its answers.

Let i˚ “ ij`1 P H be the index of the pj ` 1q-th honest client.

• Setup. B chooses ξ P Zq at random, and implicitly sets ai˚ “ β´1 and aid “ ξ ¨ β´1,

without actually computing them. B chooses all other terms in the Setup algorithm

honestly, and gives mpk and tekiuiPK to A.

• KGen queries.

1. For the first `´ 1 KGen queries:

– for any honest i P H, i ‰ i˚ and i ‰ id, B knows all the terms necessary to compute

iski.
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– for i “ i˚, the reduction B does not know ai˚ , but it can replace the terms Jρ,´ρai˚K

with Jβρ1,´ρ1K instead where ρ1
$
ÐZq. It can compute JβρK because it knows JβK and

ρ1. B can now continue computing iski˚ Ð IPE.KGenpimski, J0m,y
p0q
i , βρ1,´ρ1, 0Kq

normally.

– for i “ id, B can compute iskid in a similar fashion as above, even if it does not know

aid “ ξ ¨ β´1.

– for any corrupt i P K, B computes iski using the original honest algorithm, since it

knows all the necessary terms.

2. For any KGen query after the first ` queries, the reduction B can compute functional

key just like for the first `´ 1 queries.

3. For the `-th KGen query, B wants to embed the γ term from the Decisional Linear

challenge into the ρ term for this specific functional key. Recall that B knows only JγK

but not γ itself.

– For any corrupt i P K, observe that B can compute their respective key component

iski knowing only JγK but not γ itself.

– For any honest i P H, B computes iski Ð IPE.KGenpimski, J0m, 0m, 0, 0, 1Kq.

• Enc queries. The adversary A submits pi, t,x
p0q
i,t ,x

p1q
i,t q. If i P K, B can compute the

ciphertext normally since it knows all the necessary terms. Below we focuse on the case

when i P H. The first time the label t appears in an Enc query for some honest i P H,

the reduction B picks trTi,tuiPH as follows, where ut, vt, and zt denote the t-th component

of the vector u, v, and z from the Decisional Linear challenge1.

(a) If i P H, i ‰ i˚, and i ‰ id: B chooses rTi,t at random if i is among the first j honest

clients, else it implicitly lets rTi,t :“ Ri,t ¨ γ.

1 For convenience, we may imagine that the labels t have been renamed to be the integers t1, 2, . . . , Qencu.
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(b) If i “ i˚: B implicitly chooses

Ri˚,t ` ai˚µi˚,t “ ut, µi˚,t “ ´βvt, rTi˚,t “ zt

(c) If i “ id: B samples φ
$
ÐZq, and implicitly chooses

µid,t “ ´µi˚,t ¨ ξ
´1
` a´1

i˚ ¨ φ, Rid,t “ ´

˜

ÿ

iPH,i‰id

Ri,t `
ÿ

iPK
CPRF.EvalpKi, tq

¸

,

rTid,t “ ´

˜

ÿ

iPK
CPRF.EvalpKi, tq `

ÿ

iPH,i‰i˚,i‰id

rTi ` zt

¸

For case (a), computing the ciphertext (see Equation 5.1) is straightforward. For case

(b), it is also easy to see that given B’s knowledge of JutK, JβvtK, and JztK, one can compute

the ciphertext in a straightforward way. For case (c), observe the following. Let

ν “ ´

˜

ÿ

iPH,i‰id,i‰i˚
Ri,t `

ÿ

iPK
CPRF.EvalpKi, tq

¸

;

and thus Rid,t “ ν ´Ri˚,t.

JRid,t ` aidµid,tK “ Jν ´Ri˚,t ` ξai˚ ¨ p´µi˚,t ¨ ξ
´1
` a´1

i˚ ¨ φqK

“ Jν ´Ri˚,t ´ ai˚µi˚,t ` ξ ¨ φK

“ Jν ´ ut ` ξ ¨ φK

Further, Jµid,tK “ Jβvt ¨ ξ´1 ` β ¨ φK. Therefore, both JRid,t ` aidµid,tK and Jµid,tK can be

computed knowing ν, JutK, ξ, φ, JβvtK, and JβK.

Observe that

Ri˚,t ¨ γ “ put ´ ai˚µi˚,tqγ “ put ` β
´1
¨ βvtqγ “ put ` vtqγ

Therefore, in the Decisional Linear Challenge pJ1K, JβK, JγK, JuK, JβvK, JzKq obtained by B,

if z “ γpu`vq, then A’s view is identically distributed as in Gj. Else A’s view is identically

distributed as in Gj`1.

We now continue with the proof of Lemma 5.2.1.
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Experiment H1`´1,3. Almost identical to H`´1,3, except that the challenger C uses the following

vector in any Enc query for an honest i P H:

rxi “
´

x
p1q
i ,x

p0q
i , Ri,t ` aiµi,t, µi,t, Ti,t ` xx

p0q
i ,y

˚p0q
i y

¯

where the terms tTi,tuiPH are chosen at random subject to
ř

iPH Ti,t “ ´ρ
˚ ¨
ř

iPK CPRFpKi, tq.

As long as A respects the admissibility rule defined in Section 3.1, H`´1,3 and H1`´1,3 are

identically distributed.

Experiment H1`´1,2. Almost identical to H`´1,2, except that the challenger C chooses uses the

following vector to answer Enc queries:

rxi “
´

x
p1q
i ,x

p0q
i , Ri,t ` aiµi,t, µi,t, Ri,t ¨ ρ

˚
` xx

p0q
i ,y

˚p0q
i y

¯

,

Experiment H1`´1,1. Almost identical to H`´1,1, except that the challenger C chooses uses the

following vector to answer Enc queries:

rxi “
´

x
p1q
i ,x

p0q
i ,CPRF.EvalpKi, tq ` aiµi,t, µi,t,CPRF.EvalpKi, tq ¨ ρ

˚
` xx

p0q
i ,y

˚p0q
i y

¯

,

Using a symmetric argument as before, we can prove the computational indistinguisha-

bility between H1`´1,3 and H1`´1,2, and between H1`´1,2 and H1`´1,1.

Finally, H1`´1,1 and Hyb` are computationally indistinguishable due to the function-hiding

IND-security of the IPE scheme, since the inner-product xrxi, ryiy is preserved for any pair of

encryption and key vectors queried and for i P H. This concludes the proof of Lemma 5.2.1.
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6

Function-Hiding Ad Hoc Multi-Input Inner-Product
Encryption

In this section, we give our detailed construction of function-hiding ad hoc multi-input inner-

product encryption scheme and its formal proof.

6.1 Construction

Let IPE :“ pGen,USetup,KGen,Enc,Decq denote a function-hiding inner-product en-

cryption scheme and let DSum :“ pGen,USetup,Enc,Decq denote a decentralized secure

summation scheme.

Function-hiding, ad hoc multi-input inner-product encryption

• Genp1λ,mq:

– let ippÐ IPE.Genp1λq

– let dppÐ DSum.Genp1λ,Gq, where G P ipp
– output pp “ pipp, dpp,mq.

• USetuppppq:

– let imski Ð IPE.Setuppipp, 2m` 2q,

– let pdpki, dskiq Ð DSum.USetuppdppq

– output pki :“ ppp, dpkiq,mski :“ pimski, dskiq
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• KGenpmski, pyi,Ui, tiq, tpkjujPUi
qq:

– sample ri
$
ÐZq, where q is the prime order of group G

– let ryi “ pyi, 0
m, ri, 0q;

– let iski Ð IPE.KGenpimski, JryiKq
– let di “ ri and dcti Ð DSum.Encpdski, pJdiK,Ui, tiq, tdpkiuiPUi

qq.

– output ski :“ tiski, dctiu.

• Encppki,mski,xiq:

– let rxi “ pxi, 0
m, 1, 0q;

– output cti Ð IPE.Encpimski, JrxiKq.

• Decptpki, ski, ctiuiPUK
q:

– compute JvKT :“
ś

iPUK
IPE.Decpiski, ctiq

– compute JzK “ J
ř

iPUK
riK Ð DSum.Decpdpp, tdctiuiPUK

q

– output v :“ logpJvKT {JzKT q

Note. For our aMIIPE scheme to be efficient, we need a new, efficient DSum scheme without

random oracles. The earlier work by Chotard et al. [CDSG`20] showed that DSum can be

constructed from an “all-or-nothing encryption” scheme. They then suggested two all-or-

nothing encryption schemes: 1) one without random oracles, but the per-user ciphertext size

is proportional to the number of users n; and 2) one with random oracles where the cipher-

text length are independent of n. To get a DSum scheme whose per-user ciphertext size is

independent of n, we will need an underlying all-or-nothing encryption scheme with corre-

sponding efficiency. We give such a construction without random oracles in Appendix A.

Correctness. Observe that -

JvKT “ JΣiPUK
xxi||0

m
||1||0,yi||0

m
||ri||0yKT

“ JΣiPUK
xxi,yiy ` ΣiPUK

riKT

“ JΣiPUK
xxi,yiy ` zKT

“ JΣiPUK
xxi,yiyKT ˆ JzKT

Hence, it follows that v “ logpJvKT {JzKT q “
ř

iPUK
xxi,yiy
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Theorem 6.1.1 (Restatement of Theorem 1.1.2). Suppose that IPE satisfies selective, function-

hiding IND-security and DSum satisfies selective-IND-security, then, the above aMIIPE scheme

satisfies selective function-hiding IND-security.

Proof. The proof is presented next in Section 6.2

6.2 Proof of Theorem 6.1.1

We consider a sequence of hybrid experiments. Denote by H “ rnszK, the set of honest

parties.

Experiment aMIIPE-Expt1. This is the real-world experiment, parameterized by b “ 1. In

the experiment aMIIPE-Expt1, the challenger C answers Enc and KGen queries using the

following vectors/scalars:

rxi “ px
p1q
i , 0m, 1, 0q, ryi “ py

p1q
i , 0m, ri, 0q, di “ ri

where ri is freshly chosen for every KGen query and i P rns.

Experiment Hyb˚. Same as aMIIPE-Expt1 except that for any honest i P H, di1 “
ř

iPH ri

and rest all of di2 , ..., di|H| “ 0.

aMIIPE-Expt1 and Hyb˚ are computationally indistinguishable by the selective-IND-security

of the underlying DSum scheme as the decentralized sum function output is the same in both

the hybrids for all sets of KGen queries.

Experiment Hyb0. Same as Hyb0 except that @i P H, rxi “ pxp1qi ,x
p0q
i , 1, 0q.

Hyb˚ and Hyb0 are computationally indistinguishable by the function-hiding IND-security

of the underlying IPE scheme since the inner products are the same across both the hybrids

for any pair of encryption and key vectors queried and for i P H.
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Experiment Hyb`. We next define a sequence of hybrid experiments. Hyb` for ` P rQkgens,

where Qkgen denotes an upper bound the number of KGen queries made by A. In Hyb`, for

the first ` KGen queries, the challenger C uses ryi “
´

0m,y
p0q
i , ri, 0

¯

for any honest i P H,

and uses ryi “
´

y
p1q
i , 0m, ri, 0

¯

for any corrupt i P K. For the remaining Qkgen ´ ` number of

KGen queries, C uses ryi “
´

y
p1q
i , 0m, ri, 0

¯

for all i P rns.

We show in Lemma 6.2.1 that for all ` P rQkgens, hybrids Hyb`´1 and Hyb` are computa-

tionally indistinguishable.

Experiment Hyb#. The challenger C answers Enc and KGen queries using the following

vectors/scalars for any honest i P H:

rxi “
´

0m,x
p0q
i , 1, 0

¯

, ryi “
´

0m,y
p0q
i , ri, 0

¯

, di “

#

ř

jPH rj if i “ i1 P H
0 if i P Hzti1u

For corrupt i P K, the challenger C still uses:

rxi “
´

x
p1q
i , 0m, 1, 0

¯

, ryi “
´

y
p1q
i , 0m, ri, 0

¯

, di “ ri

Observe that HybQkgen
and Hyb# are almost identical except that the first m coordinates

in rxi are replaced with 0m for i P H. Since this modification preserves the inner products

xrxi, ryiy for any pair of encryption and key vectors queried, and for any i P H, Hyb# is

computationally indistinguishable from HybQkgen
due to the function-hiding IND-security of

the IPE scheme.

Experiment Hyb˚˚. Same as Hyb# except that for all i P H, di are restored back to ri.

Observe that the decentralized sum function output is preserved across experiments Hyb#

and Hyb˚˚. Hence, assuming the selective-IND-security of DSum scheme, the two experiments

are computationally indistinguishable.
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Experiment aMIIPE-Expt0. aMIIPE-Expt0 differs from Hyb˚˚ only in the slot in which x
p0q
i

and y
p0q
i are put in rx and ry respectively for all honest parties. Since for honest i P H, the

inner-product xrxi, ryiy is preserved for any pair of encryption and key vectors queried; and

for corrupt i P K, recall that our admissibility stipulates that x
p0q
i “ x

p1q
i and y

p0q
i “ y

p1q
i ,

and thus it makes no difference whether x
p0q
i ,y

p0q
i is used or whether x

p1q
i ,y

p1q
i is used by C,

therefore Hyb˚˚ is computationally indistinguishable from aMIIPE-Expt0.

Therefore, to complete the proof of Theorem 6.1.1, it suffices to prove the following

lemma, which shows the computational indistinguishability of Hyb`´1 and Hyb`.

Lemma 6.2.1. Suppose that IPE satsifies function-hiding IND-security. Then, Hyb`´1 is

computationally indistinguishable from Hyb` for any ` P rQkgens.

Proof. Note that going from Hyb`´1 to Hyb`, the only difference is in how ryi are chosen for all

i P H for answering `-th KGen query. Hence, we consider a sequence of hybrid experiments

to make this transition.

Experiment H`´1,1. In experiment H`´1,1, for any honest i P H, the challenger C uses the

following vectors/scalars to answer the Enc and KGen queries where r˚i Ð Zkq denotes the

randomness chosen during `-th KGen query and we use y˚p0q, y˚p1q to denote the key vectors

submitted during the `-th KGen query:

rxi “
´

x
p1q
i ,x

p0q
i , 1, r˚i ` xx

p1q
i ,y

˚p1q
i y

¯

,

ryi “

$

’

’

&

’

’

%

´

0m,y
p0q
i , ri, 0

¯

first `´ 1 KGen queries

p0m, 0m, 0, 1q `-th KGen query
´

y
p1q
i , 0m, ri, 0

¯

remaining Qkgen ´ ` KGen queries

,

di1 “

#

ř

jPH r
˚
j `-th KGen query

ř

jPH rj otherwise
, di2 “ 0, ..., diH “ 0

In the above, ri are freshly chosen for every KGen query, and r˚i corresponds to the

randomness chosen for the challenge KGen query, i.e., the `-th KGen query.
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Observe that H`´1,1 is almost identical to Hyb`´1 except for the above modifications high-

lighted in blue. Since these modification preserves the inner products xrxi, ryiy for any pair of

encryption and key vectors queried, and for any i P H, H`´1,1 and Hyb`´1 are computationally

indistinguishable due to the function-hiding IND-security of the IPE scheme.

Experiment H1`´1,1. Almost identical to H`´1,1 except that the challenger C chooses the fol-

lowing vectors to answer Enc queries for an honest i P H:

rxi “
´

x
p1q
i ,x

p0q
i , 1, r˚i ` xx

p0q
i ,y

˚p0q
i y

¯

,

In the above, r˚i corresponds to the randomness chosen for the challenge KGen query, i.e.,

the `-th KGen query.

As long as A respects the admissibility rule defined in Section 3.2, H`´1,1 and H1`´1,1 are

identically distributed.

Finally, H1`´1,1 and Hyb` are computationally indistinguishable due to the function-hiding

IND-security of the IPE scheme, since the inner-product xrxi, ryiy is preserved for any pair of

encryption and key vectors queried and for i P H. This concludes the proof of Lemma 6.2.1.
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Appendix A

Efficient All-Or-Nothing Encryption without Random
Oracles

A.1 Definition: All or Nothing Encryption

All-or-nothing encryption (AoNE) was defined by Chotard et al. [CDSG`20]. Intuitively, we

want to guarantee that if one collects all ciphertexts from all users in a set U , encrypted to

the same pU , tq pair, then everyone’s plaintext message can be decrypted. However, if one

does not have the collection of all ciphertexts from all users in U , then, nothing is leaked

about the plaintexts.

Formally, an all-or-nothing encryption scheme, parametrized by a plaintext length m

which is a polynomially bounded function of the security parameter λ, consists of the fol-

lowing possibly randomized algorithms:

• app Ð Genp1λ, n,mq: takes a security parameter 1λ, the space size of user identities n,

the length of the messages m, and outputs the public parameters app;

• paPKi, aSKiq Ð USetuppappq: takes in the public parameters app, and outputs a public

key and secret key pair for a user, denoted aPKi and aSKi, respectively;

• cti Ð Encpapp, aSKi,msg “ px,U , tq, taPKjujPUq: takes in the public parameters app a

user’s secret key aSKi, and a message msg “ px,U , tq P M which consists of a private

component x, a set of users U and a label t, and a set of public keys taPKjujPU for users
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in U ; and outputs a ciphertext cti.

• v Ð Decpapp, tctiuiPUq: takes in public parameters app, and a set of ciphertexts tctiuiPU ,

and outputs a decrypted value v “ txiuiPU ; if decryption fails, output v “ K.

Correctness. Correctness is defined in the most natural way: for any λ P N, any x1, . . . ,xn P

t0, 1um, and any t P t0, 1u˚,

Pr

»

—

—

–

appÐ Genp1λ, n,mq
@i P rns : paPKi, aSKiq Ð USetuppappq
@i P U : cti Ð Encpapp, aSKi,msg “ pxi,U , tq, taPKjujPUq
tx1mjujPU Ð Decpapp, tctjujPUq

: @i P rns : x1i “ xi

fi

ffi

ffi

fl

“ 1

Definition 4 (IND-security of AoNE). We say that an all-or-nothing encryption scheme is

IND-secure, if for any non-uniform PPTadmissible adversary A, the following two experi-

ments AoNExpt0 and AoNExpt1 are computationally indistinguishable, where AoNExptb for

b P t0, 1u is defined as follows:

• Setup. The challenger C runs app,Ð Setupp1λq, @i P rns : paPKi, aSKiq Ð USetuppappq

gives app, taPKiuiPrns to the adversary A, and receives the corrupted set K Ă rns from

the adversary A. The challenger C now gives the corrupted keys taSKiuiPK to A.

• Query. The adversary A can adaptively submit encryption queries of the follow-

ing form pi,xp0q,xp1q,U , tq, and the challenger computes cti Ð Encpapp, aSKi,msg “

pxpbq,U , tq, taPKjujPUq and returns cti to A.

We say that the adversary A is admissible iff the following conditions hold with probability

1:

• For any encryption query pi,xp0q,xp1q,U , tq pertaining to a corrupted user i, it must be

that xp0q “ xp1q.

• For any label t for which the adversary A has submitted an encryption query for every

honest user, it must be that for every encryption query of the form pi,xp0q,xp1q,U , tq

pertaining to this label t, xp0q “ xp1q.
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Definition 5 (Selective-IND-security of AoNE). We say that an all-or-nothing encryption

scheme is selective-IND-secure if in definition 4, the adversary makes all the encryption

queries at once instead of adaptively.

A.2 Construction

The efficient construction of AoNE by Chotard et al. [CDSG`20] crucially relied on random

oracles. Our construction follows their blueprint of using IBE as a building block but gets

rid of random oracles. The root cause of needing random oracles in their construction was

that they used the Boneh-Franklin IBE [BF01]. Subsequent constructions of IBE [BB04,

Wat05,Gen06] have successfully managed to get rid of random oracles. The construction by

Gentry [Gen06] is from non-standard assumptions. Among the other two from standard

assumptions, the construction by Boneh and Boyen [BB04] has shorter public parameters

but only achieves selective-ID IND-security, whereas the construction by Waters [Wat05] has

larger public parameters and is fully secure. For our purposes, selective IND-secure AoNE

is sufficient as our aMIIPE construction achieves selective function-hiding IND-security. To

construct selective IND-secure IBE, selective-ID IND-secure IBE is sufficient. Hence, we will

use Boneh and Boyen’s [BB04] IBE construction to construct our AoNE scheme.

Let G be a bilinear group of prime order q and let e : G ˆ G Ñ GT be a bilinear map.

Deonte a generator of group G by g and let PG denote an algorithm which chooses all

these values. For all set of users U Ď rns and a label space T , let U ˆ T Ď Zq. Denote

by F a publicly computable function F : Zq Ñ G. For this construction, F is defined as

FipIDq “ kpgαiqID for ith-user and FUpIDq “ kp
ś

jPU g
αjqID for a set of users U , where k is

a random element of the group G generated as part of the public params, gαi is part of the

public key of the ith-user. Lastly, denote by SKE a symmetric key encryption scheme which

is one-time secure.

Efficient all-or-nothing encryption without random oracles

• Genp1λ, n,mq:
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– let pG,GT , q, e, gq Ð PGp1λq

– let h, k
$
ÐG

– output app “ pG,GT , q, e, g, h, kq.

• USetuppappq:

– Sample αi
$
ÐZq

– output aPKi “ gαi , aSKi “ hαi

• Encpapp, aSKi,mi “ pxi,U , tq, taPKjujPUq:

– Sample ρi
$
ÐZq and compute Ai1 “ ep

ś

jPU
gαj , hqρi , Ai2 “ gρi , Ai3 “ FUpU ||tqρi

– Sample ri
$
ÐZq and compute Bi

1 “ hαi ¨ FUpU ||tqri , Bi
2 “ gri

– Compute the symmetric key as Ki,U ,t “ Ai1 and encrypt xi using it as
cti Ð SKE.EncpKi,U ,t, xiq

– Compute a share of the decryption key as Si,U ,t “ pA
i
2, A

i
3, B

i
1, B

i
2q

– output cti “ pcti, Si,U ,t,U , tq

• Decpapp, tctiuiPUq:

– Parse the ciphertexts for all i P U as cti “ pcti, Si,U ,t,U , tq,
where Si,U ,t “ pA

i
2, A

i
3, B

i
1, B

i
2q

– Compute B1 “
ś

jPU
Bj

1 and B2 “
ś

jPU
Bj

2

– @i P U , recover Ai1 “
epAi

2,B1q

epAi
3,B2q

and then recover xi Ð SKE.DecpKi,U ,t “ Ai1, ctiq

– output txiuiPU

A.3 Correctness

If the decryption algorithm can recover Ai1’s correctly, then, by the correctness of the sym-

metric key encryption scheme, our scheme’s output must be correct. Therefore, we just need

to show the Ai1’s are recoverred correctly. If all the users correctly run the algorithms Gen,
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USetup and Enc, then, observe that -

epAi2, B1q

epAi3, B2q
“
epgρi , hΣαi ¨ FUpU ||tqΣriq

epFUpU ||tqρi , gΣriq

“
epgρi , hΣαiq ¨ epgρi , FUpU ||tqΣriq

epFUpU ||tqρi , gΣriq

“ epgρi , hΣαiq

“ epgΣαi , hqρi

“ Ai1

A.4 Security

Theorem A.4.1. Suppose that qr-fold DBDH assumption holds true for some fixed qr, then,

the above AoNE scheme satisfies sel-IND-security.

Proof. Let qe denote the number of unique IDs pU , tq for which the adversary sends atleast

one encryption query and let qr deonte the maximum number of encryption queries for any

such unique ID. Then, we prove security via a hybrid argument. For i P t1, ..., qeu, the hybri

experiments are as follows -

Experiment Hybi,0. The challenger plays the game as defined in Section A.1 except the

response to encryption queries for pmj
0 “ px0,U j, tjq,mj

1 “ px1,U j, tjqq changes as follows -

for all j ě i, the challenger encrypts mj
0 and for all j ă i, the challenger encrypts mj

1.

Experiment Hybi,1. This experiment is similiar to Hybi,0, except that in all the encryption

queries for the ith unique ID pU i, tiq, the challenger uses an ephemeral random value K

to compute cti Ð SKE.EncpK, x0q instead of using Ki,Ui,ti . Here, x0, x1 are the part of

messages mi
0,m

i
1 respectively sent by the adversary. Note that the adversary can send

multiple encryptions queries for the same unique ID pU i, tiq and the keys K are ephemeral

in the sense that they are sampled freshly and randomly for each such encryption query.
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Experiment Hybi,2. This experiment is similiar to Hybi,1, except that in all the encryption

queries for the ith unique ID pU i, tiq, the challenger encrypts x1 instead of x0. That is, it

computes cti Ð SKE.EncpK, x1q where x0, x1 were the part of messages mi
0,m

i
1 respectively

sent by the adversary.

Experiment Hybi,3. This experiment is similar to Hybi,2, except that in all the encryption

queries for the ith unique ID pU i, tiq, the challenger restores back to using K as in the original

construction. That is, it encrypts cti Ð SKE.EncpKi,Ui,ti , x1q.

The sequence of experiments we follow is Hyb1,0, ...,Hyb1,3,Hyb2,0, ...Hyb2,3,Hyb3,0, ...,Hybqe,3.

Note that in experiment Hyb1,0, the challenger always encrypts mj
0 and hence this is same as

AoNExpt0. In experiment Hybqe,1, the challenger always encrypts mj
1 and hence this is same

as AoNExpt1. Further, note that Hybi,3 “ Hybi`1,0 for all i P rqe ´ 1s. Therefore, to prove

that Hyb1,0 and Hybqe,3 are computationally indistinguishable, we need to show that for all

i P rqes: Hybi,0 «c Hybi,1, Hybi,1 «c Hybi,2, Hybi,2 «c Hybi,3.

Observe that the one-time security of the symmetric key encryption directly implies that

Hybi,1 «c Hybi,2. Further, the other two experiment transitions involve switching between

honestly generated symmetric key Ki,Ui,ti and randomly sampled symmetric key K. Hence,

we just need to show that Hybi,0 «c Hybi,1 and by similar argument it would follow that

Hybi,2 «c Hybi,3.

Hybi,0 «c Hybi,1. We prove this by contradiction. We start with an adversary A which can

distinguish between Hybi,0 and Hybi,1 with noticeable advantage and construct an adversary

B which breaks the DBDH assumption with noticeable advantage. The reduction is as follows.

Note that the two hybrids differ in how the symmetric keys are generated while responding

to encryption queries for the ith unique ID pU i, tiq.

Reduction. The DBDH challenger generates the pairing groups pG,GT , q, e, gq Ð PGp1λq

and the challenge tuple pg, g1 “ ga, g2 “ gb, tg3,i “ gci , TiuiPrqrsq where a, b, c1, ..., cqr
$
ÐZq,
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β
$
Ðt0, 1u and if β “ 0, then, Ti “ epg, gqabci , else Ti

$
ÐGT . It sends all this to B which needs

to guess β correctly to win the game. Also, A sends a set of corrupt parties K Ă rns to B

and all the encryption queries of the form pmj
0 “ px0,U , tq,mj

1 “ px1,U , tqq to B. B needs

to first send back everyone’s public keys and corrupt parties’ master secret keys back to A,

and then also send back replies to encryption queries.

B will now embed this qr-fold DBDH challenge carefully in the game against A. g1 will

be embedded as part of the public key for some honest party z as pkz “ gαz :“ g1 (we

postpone the discussion of this choice of honest party to after the reduction as the reduction

would be insighful for it), g2 will be part of the public params as h “ g2, g3,i’s will serve

as randomness in encryption and Ti’s will be used for selecting the symmetric keys for the

honest party chosen above.

B starts by setting ID˚ “ pU i||tiq. It then samples δ
$
ÐZq, sets k “ gδ{gID

˚

1 , h “ g2

and pp “ pG,GT , q, e, g, h, kq. Further, @j P rnsztzu: B samples αj
$
ÐZq and sets pkj “

gαj ,mskj “ hαj . For the honest party z, it sets pkz “ gαz :“ g1. According to this, mskz is

supposed to be gab which B doesn’t know, else it will be able to trivially break the DBDH

challenged by computing epgab, gcq. It sends the public keys of all users tpkjujPrns and the

master secret keys of corrupt users tmskjujPK to A.

In AoNE, there are no KGen queries, so we need to only show how does B simulate A’s

Enc queries. For an Enc query of the form pmj,s
0 “ pxs0,U j, tjq,mj,s

1 “ pxs1,U j, tjqq, where

pU j, tjq is the jth unique ID, and it is the sth query for this ID, B simulates the response as

follows.

• Choose Ks
j,Uj ,tj “ Aj,s1 “ Ts ¨ epg3,s,

ś

pkjPUztzu
hαjq, Aj,s2 “ g3,s, A

j,s
3 “ gδ3,s

• Compute ctj,s Ð SKE.EncpKs
j,Uj ,tj , x

s
0q

• Sample rj,s
$
ÐZq and if it is the zth party, then, compute Bj,s

1 “ g
´δ{pID´ID˚q
2 ¨FUpIDq

rj,s ,

and Bj,s
2 “ g

´1{pID´ID˚q
2 ¨ grj,s , else, for any other party w, compute Bj,s

1 “ hαw ¨

FUpIDq
rj,s , and Bj,s

2 “ grj,s . Here, ID “ pU j||tjq
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• Compute the share of the decryption key Ssj,Uj ,tj “ pA
j,s
2 , Aj,s3 , Bj,s

1 , Bj,s
2 q

• Send back the output ctj,s “ pctj,s, S
s
j,Uj ,tj ,U j, tjq to A

After sending back all the responses, B receives a guess β1 P t0, 1u from A indicating

that A thinks that the distribution belonged to Hybi,β1 . B forwards this guess to the qr-fold

DBDH challenger. B wins the game if β “ β1.

Choice of honest party z. Observe that in the above simulation, B can’t simulate values

Bj,s
1 , Bj,s

2 for the honest party z when ID “ ID˚. To get around this hurdle, we use an

observation made by [CDSG`20] in their AoNE security proof that there must exist a

honest party which is not queried on ID “ ID˚. This is because, for A to distinguish

between Hybi,0 and Hybi,1, A must make an encryption query with xs0 ‰ xs1 with noticeable

probability, and conditioned on this event, A retains noticeable advantage. Moreover, if it

were the case that A queries every party in U i, then, the last admissibility condition in the

security game gets violated as xs0 ‰ xs1 for some party, resulting in the B’s guess to be set

to a random value, thus making A’s efforts useless. Thus, it is safe to assume that there

exists pkz P U j which in not queried at all for ID˚. Thus, B randomly guesses an honest

party z
$
Ðrns which is not queried for ID˚. If B’s guess turns out to be wrong, it aborts

the protocol with A and sends a random guess to the DBDH challenger. This results in a

polynomial loss of security in the reduction.

Reduction argument. We argue that when β “ 0, the response to encryption queries have

the same distribution as in Hybi,0. This is because, our challenge embedding results in

epgαz , hqρi “ epga, gbqcs “ epg, gqabcs which is exactly what Ts is when β “ 0. When β “ 1,

the distribution is same as in Hybi,1 as Ts
$
ÐG makes the symmetric key look uniformly

random. Hence, if A can distinguish Hybi,0,Hybi,1 with noticeable probability, then, B, can

break the DBDH assumption with noticeable probabiity.
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Appendix B

MCIPE: Removing the All-or-Nothing Admissibility
Rule

Recall that in our definition of MCIPE earlier in Section 3.1, the second admissibility rule

is of an “all or nothing” nature: it requires that if the adversary queries one ciphertext

for a label t, then it must query all honest clients’ ciphertexts for the same label. This

all-or-nothing admissibility rule can be lifted if we require that the adversary be “strongly

selective”, i.e., it is required to submit all Enc and KGen queries in one shot upfront in the

security game. The transformation was described by Chotard et al. [CDSG`20] but their

scheme is not function-hiding. For completeness, we explicitly describe this transformation,

and show that it works for function-hiding MCIPE too.

We will use all-or-nothing encryption as a blackbox. In MCIPE, as the set of users is not

dynamic, hence, we will use the following simplified notation of AoNE.

• app, aSK1, . . . , aSKn Ð Setupp1λq: the Setup algorithm takes in a security parameter

1λ and outputs n client encryption keys denoted aSK1, . . . , aSKn, respectively, and the

public parameters denoted app.

• ctÐ Encpapp, aSKi, x, tq: takes in the public parameters app, a client secret key aSKi,

a plaintext message x P t0, 1u`, and a label t P t0, 1u˚, outputs a ciphertext ct.
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• x1, . . . , xn Ð Decpapp, ct1, . . . , ctnq: given n ciphertexts ct1, . . . , ctn gathered from all

clients and encrypted to the same label, output the decrypted messages x1, . . . , xn.

B.1 Removing the All-or-Nothing Admissibility Rule

For simplicity, henceforth, we say that an MCIPE scheme is strongly selective, function-hiding

AoN-IND-secure iff it satisfies satisfies our function-hiding IND-security notion defined earlier

in Definition 1 of Section 3.1, and moreover, the adversary must now submit all KGen and

Enc queries in one shot. We say that an MCIPE scheme is strongly selective, function-hiding

IND-secure if it satisfies the same security notion as above except that the adversary is no

longer required to respect the second admissibility rule.

We now show how to upgrade an MCIPE scheme that is strongly selective, function-hiding

AoN-IND-secure (henceforth denoted MCIPE) to one that is strongly selective, function-

hiding IND-secure (henceforth denoted MCIPE˚). The idea is quite simple: simply wrap

the ciphertexts in another layer of all-or-nothing encryption. Henceforth, let AoNE :“

pSetup,Enc,Decq denote an all-or-nothing encryption scheme.

• MCIPE˚.Genp1λq: call ppÐ MCIPE.Genp1λq and output pp˚ “ pp.

• MCIPE˚.Setupppp˚,m, nq:

1. call pmpk,msk, tekiuiPrnsq Ð MCIPE.Setupppp,m, nq,

2. call app, aPK1, . . . , aPKn Ð AoNE.Setupp1λq.

3. Output mpk˚ :“ pmpk, appq,msk˚ “ msk, and for i P rns, output ek˚i :“ peki, aPKiq.

• MCIPE˚.KGenpmpk˚,msk˚,yq: call sk˚y Ð MCIPE.KGenpmpk,msk,yq and output sk˚y “

sky.

• MCIPE˚.Encpmpk˚, ek˚i ,xi, tq:

1. call ctÐ MCIPE.Encpmpk, eki,xi, tq; and

2. output ct˚ :“ AoNE.EncpaPKi, ct, tq.

• MCIPE˚.Decpmpk˚, sk˚y, tct
˚
i,nuiPrnsq:
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1. call ct1, . . . , ctn Ð AoNE.Decpapp, ct˚1 , . . . , ct
˚
nq, and

2. output MCIPE.Decpmpk, sky, tcti,nuiPrnsq.

Theorem B.1.1. Suppose that the underlying MCIPE scheme is strongly selective, function-

hiding AoN-IND-secure and AoNE is a secure all-or-nothing encryption scheme, then the

resulting MCIPE˚ scheme is strongly selective, function-hiding IND-secure.

Proof. We can consider a sequence of hybrid games.

AoNExp0. This is the real security game for MCIPE˚ where the challenger uses the bit b “ 0,

and was defined earlier.

Hyb0. In Hyb0, the challenger checks which labels t are “complete” w.r.t encryption queries.

A label t is said to be complete if the adversary has submitted at least one encryption query

pertaining to t for every honest client; otherwise, it is said to be incomplete. Now, for any

incomplete label t, whenever the challenger is about to call ct˚ Ð AoNE.EncpaPKi, ct, tq for

some honest client i, the challenger instead calls ct˚ Ð AoNE.EncpaPKi,0, tq. Through a

straightforward reduction, one can show that Hyb0 is computationally indistinguishable from

AoNExp0 due to the security of AoNE.

Hyb1. Same as Hyb0 except that the challenger uses the bit b “ 1 now. Through a straight-

forward reduction, one can show that Hyb1 is computationally indistinguishable from Hyb0

due to the selective, function-hiding AoN-IND-security of the underlying MCIPE scheme.

AoNExp1. This is the real security game for MCIPE˚ where the challenger uses the bit b “ 1.

Hyb1 is computationally indistinguishable from AoNExp1 for the same reason why Hyb0 is

computationally indistinguishable from AoNExp0.
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